Skip to main content
Log in

Laticiferous taxa as a source of energy and hydrocarbon

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

Twenty-nine laticiferous taxa of Apocynaceae, Asclepiadaceae, and Sapotaceae were screened for suitability as alternative sources of renewable energy, rubber, and phytochemicals and to select the most promising ones for large-scale cultivation. Of these,Allamanda violacea (14.9% protein, 13.8% polyphenol, 8.6% oil, 3.2% hydrocarbon),Catharanthus roseus (15.4% protein, 10.4% polyphenol, 11.5% oil, 1.9% hydrocarbon), andHolarrhena antidysenterica (14.2% protein, 16.4% polyphenol, 5.4% oil, 4.8% hydrocarbon) of Apocynaceae;Asclepias curassavica (19.3% protein, 6.5% polyphenol, 3.9% oil, 2.0% hydrocarbon), Calotropis gigantea (18.5% protein, 6.8% polyphenol, 7.0% oil, 2.8% hydrocarbon) of Asclepiadaceae;Mimusops elengi (11.3% protein, 9.7% polyphenol, 7.2% oil, 4.0% hydrocarbon) of Sapotaceae show promising potential for future petrochemical plantations; of all these taxa,Holarrhena antidysenterica yielded an unusually high percentage (4.8%) of hydrocarbon fraction followed byMimusops elengi (4.0%). NMR spectra confirmed the presence of cis-polyisoprene in all species studied exceptNerium indicum (white-flowered var.). These data indicate that the majority of the species under investigation may be considered for large-scale cultivation as an alternative source of rubber, intermediate energy, and other phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • AOAC. 1980. Official methods of analysis, 13th ed. Association of Official Analytical Chemists, Washington, DC.

    Google Scholar 

  • Bagby, M. O., R. A. Buchanan, and F. H. Otey. 1981. Multi-use crops and botanochemical production. Amer. Chem. Soc. Symp. Ser. No. 144:125–136.

    CAS  Google Scholar 

  • Bolz, R. E., and G. L. Tuve, eds. 1973. Pages 393, 395in Handbook of tables for applied engineering science. Chemical Rubber Co., Cleveland.

    Google Scholar 

  • Bovey, F. A. 1972. High resolution of macromolecules. Academic Press, New York.

    Google Scholar 

  • Buchanan, R. A., I. M. Cull, F. H. Otey, and C. R. Russell. 1978a. Hydrocarbon-and rubberproducing crops: evaluation of U.S. plant species. Econ. Bot. 32:131–145.

    CAS  Google Scholar 

  • —, —, —, and —. 1978b. Hydrocarbon-and rubber-producing crops: evaluation of 100 U.S. plant species. Econ. Bot. 32:146–153.

    CAS  Google Scholar 

  • —, and J. A. Duke. 1981. Botanochemical crops. Pages 157–179in T. A. McClure and E. S. Lipinsky, eds., CRC handbook of biosolar resources. Vol. II. Resource materials. CRC Press, Boca Raton, FL.

    Google Scholar 

  • —, and F. H. Otey. 1979. Multi-use oil-and hydrocarbon-producing crops in adaptive systems for food, material, and energy production. Biosources Digest 1:176–202.

    CAS  Google Scholar 

  • —, —, and M. O. Bagby. 1980. Botanochemicals. Phytochemistry 14:1–22.

    Article  CAS  Google Scholar 

  • —, —, C. R. Russell, and I. M. Cull. 1978. Whole plant oils, potential new industrial raw materials. J. Amer. Oil Chem. Soc. 55:657–662.

    Article  CAS  Google Scholar 

  • Carr, M. E. 1985. Plant species evaluated for new crop potential. Econ. Bot. 39:336–345.

    Google Scholar 

  • —, and M. O. Bagby. 1987. Tennessee plant species screened for renewable energy sources. Econ. Bot. 41:78–85.

    CAS  Google Scholar 

  • —, —, and W. B. Roth. 1986. High oil-and polyphenol producing species of the North-west. J. Amer. Oil Chem. Soc. 63:1460–1464

    Article  CAS  Google Scholar 

  • —, B. S. Phillips, and M. O. Bagby. 1985a. Multipurpose oil-bearing plants tolerant of arid or semi-arid environments. J. Amer. Oil Chem. Soc. 62:1367–1370.

    Article  CAS  Google Scholar 

  • —, —, and —. 1985b. Xerophytic species evaluated for renewable energy resources. Econ. Bot. 39:505–513.

    Google Scholar 

  • —, W. B. Roth, and M. O. Bagby. 1986. Potential resource materials from Ohio plants. Econ. Bot. 40:434–441.

    CAS  Google Scholar 

  • Chen, H. Y. 1962. Nuclear magnetic resonance study of butadiene-isoprene-copolymers. Analytical Chem. 34:1134–1136.

    Article  CAS  Google Scholar 

  • Chopra, R. N., S. L. Nayar, and I. C. Chopra. 1956. Glossary of Indian medicinal plants. CSIR, New Delhi.

    Google Scholar 

  • Cocks, L. V., and C. Van Rede. 1966. Chemical characteristics. Pages 113–126in Laboratory handbook for oil and fat analysis. Academic Press, London and New York.

    Google Scholar 

  • Emon, J. V., and J. N. Seiber. 1985. Chemical constituents and energy content of two milkweeds,Asclepias curassavica andA. speciosa. Econ. Bot. 39:47–55.

    Google Scholar 

  • Erdman, M. D., and B. A. Erdman. 1981.Calotropis procera as a source of plant hydrocarbons. Econ. Bot. 35:467–472.

    CAS  Google Scholar 

  • Jenkins, B. M., and J. M. Ebeling. 1985. Thermochemical properties of biomass fuels. Calif. Agric. 39(5, 6):14–16.

    Google Scholar 

  • Maxwell, B. D., S. M. Wiatr, and P. K. Fay. 1985. Energy potential of leafy spurge(Euphorbia esula). Econ. Bot. 39:150–156.

    Google Scholar 

  • McChesney, J. D., and R. P. Adams. 1985. Co-evaluation of plant extracts as petrochemical substitutes and for biologically active compounds. Econ. Bot. 39:74–86.

    Google Scholar 

  • Nielsen, P. E., N. Nishimura, J. Otvos, and M. Calvin. 1977. Plant crops as a source of fuel and hydrocarbon-like materials. Science 198:942–944.

    Article  PubMed  CAS  Google Scholar 

  • Roth, W. B., M. E. Carr, I. M. Cull, B. S. Phillips, and M. O. Bagby. 1984. Evaluation of 107 legumes for renewable sources of energy. Econ. Bot. 38:358–364.

    CAS  Google Scholar 

  • —, I. M. Cull, R. A. Buchanan, and M. O. Bagby. 1982. Whole plants as renewable energy resources: checklist of 508 species analysed for hydrocarbon, oil, polyphenol, and protein. Trans. Illinois State Acad. Sci. 75:217–231.

    CAS  Google Scholar 

  • Wang, S., and J. B. Huffman. 1981. Botanochemicals: supplement to petrochemicals. Econ. Bot. 35: 369–382.

    CAS  Google Scholar 

  • Ward, C. C. 1978. Petroleum and other liquid fuels. Pages 7–14in T. Baumeister, ed., Standard handbook for mechanical engineers. McGraw Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marimuthu, S., Subramanian, R.B., Kothari, I.L. et al. Laticiferous taxa as a source of energy and hydrocarbon. Econ Bot 43, 255–261 (1989). https://doi.org/10.1007/BF02859867

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02859867

Keywords

Navigation