Skip to main content
Log in

The origins of the genetic code

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References Cited

  • Abelson, P. H. 1966. Chemical events on the primitive earth. Proc. Nat. Acad. Sci., U.S.A.55: 1365–1372.

    Article  CAS  Google Scholar 

  • Abraham, D. J. 1971. Proposed detail structural model for tRNA and its geometric relationship to a messenger. J. Theor. Biol.30: 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Antonov, A. S. 1971. DNA: Origin, evolution and variability.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma, North-Holland Publishing Co., Amsterdam, pp. 420–424.

    Google Scholar 

  • Armstrong, D. J., W. J. Burrow, F. Skoog, K. L. Roy, &D Söll. 1969a. Cytokinins: Distribution in transfer RNA species ofEscherichia coli. Proc. Nat. Acad. Sci., U.S.A.63: 834–841.

    Article  CAS  Google Scholar 

  • —,F. Skoog, R. M. Bock, I. Gillam, &G. M. Tener. 1969b. Cytokinins: Distribution in species of yeast transfer RNA. Proc. Nat. Acad. Sci., U.S.A.63:504–511.

    Article  CAS  Google Scholar 

  • Bar-nun, A., N. Bar-nun, S. H. Bauer, &C. Sagan. 1971. Shock synthesis of amino acids in simulated primitive environments.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 114–122.

    Google Scholar 

  • Besson, J., &P. Gavaudan. 1967. Sur l’organisation logarithmique du code génétique. C.R. Acad. Sci. Paris.D264: 1311–1314.

    Google Scholar 

  • Bishop, M. J., R. Lohrmann, &L. E. Orgel. 1972. Prebiotic phosphorylation of thymidine at 65°C in simulated desert conditions. Nature237: 162–164.

    Article  PubMed  CAS  Google Scholar 

  • Breed, R. S., E. G. D. Murray, &J. N. R. Smith. 1957. Bergey’s manual foi determinative bacteriology. Williams and Wilkins, Baltimore, pp. 837–853.

    Google Scholar 

  • Bruenn, J., &K. B. Jacobson. 1972. New species of tyrosine tRNA in nonsense suppressor strains of yeast. Biochim. Biophys. Acta287: 68–76.

    PubMed  CAS  Google Scholar 

  • Buettner-Janusch, J., &R. L. Hill. 1965. Evolution of hemoglobin in Primates.In: Evolving genes and proteins, ed. by V. Bryson & H. J. Vogel. Academic Press, New York. pp. 167–181.

    Google Scholar 

  • Burton, S. D., R. Y. Morita, &W. Miller. 1966. Utilization of acetate byBeggiatoa. J. Bacteriol.91: 1192–1200.

    PubMed  CAS  Google Scholar 

  • Buvet, R., E. Etaix, F. Godin, P. Leduc, &L. Le Port. 1971. Energetical continuity between present-day and primeval syntheses of biological compounds.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma, North-Holland Publishing Co., Amsterdam. pp. 51–62.

    Google Scholar 

  • Calvin, M. 1956. Chemical evolution and the origin of life. Amer. Scientist44: 248–263.

    Google Scholar 

  • —. 1961. The origin of life on earth and elsewhere. Ann. Int. Med.54: 954–976.

    Google Scholar 

  • —. 1965. Chemical evolution. Proc. Roy. Soc. London.A288: 441–466.

    Google Scholar 

  • —. 1967. Chemical evolution.In: Evolutionary biology, volume 1, ed. by T. Dobzhansky, M. K. Hecht, & W. C. Steere. Appleton-Century-Crofts, New York. pp. 1–25.

    Google Scholar 

  • —. 1969. Chemical evolution: Molecular evolution towards the origin of living systems on the earth and elsewhere. Oxford University Press, Oxford. 278 pp.

    Google Scholar 

  • —, &G. J. Calvin. 1964. Atom to Adam. Amer. Scientist52: 163–186.

    Google Scholar 

  • Chambers, R. W. 1971. On the recognition of tRNA by aminoacyl-tRNA ligase.In: Progress in nucleic acid research and molecular biology, volume 11, ed. by J. N. Davidson & W. E. Cohn. Academic Press, New York. pp. 489–525.

    Google Scholar 

  • Chan, T., &A. Garen. 1969. Amino acid substitutions resulting from suppression of nonsense mutations. IV. Leucine insertion by the Su6+ suppressor gene. J. Mol. Biol.45: 545–548.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1970. Amino acid substitutions resulting from suppression of nonsense mutations. V. Tryptophan insertion by the Su9+ gene, a suppressor of UGA nonsense triplet. J. Mol. Biol.49: 231–234.

    Article  PubMed  CAS  Google Scholar 

  • —,R. E. Webster, &N. D. Zinder. 1971. Suppression of UGA codon by a tryptophan tRNA. J. Mol. Biol.56: 101–116.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, M. 1970. A mechanism for the evolution of the genetic code. Curr. Mod. Biol.3: 260–264.

    PubMed  CAS  Google Scholar 

  • Consden, R., A. H. Gorgon, A. J. P. Martin, &R. L. M. Synge. 1947. Gramicidin S: the sequence of the amino-acid residues. Biochem. J.41: 596–602.

    PubMed  CAS  Google Scholar 

  • Corrigan, J. J. 1969. D-amino acids in animals. Science164: 142–149.

    Article  PubMed  CAS  Google Scholar 

  • Cory, S., &K. A. Marcker. 1970. The nucleotide sequence of methionine transfer RNAM. J. Biochem.12: 177–194.

    CAS  Google Scholar 

  • Crick, F. H. C. 1958. On protein synthesis. Symp. Soc. Exp. Biol.12: 138–163.

    PubMed  CAS  Google Scholar 

  • —. 1966. Codon-anticodon pairing: The wobble hypothesis. J. Mol. Biol.19: 548–555.

    Article  PubMed  CAS  Google Scholar 

  • —. 1968. Origin of the genetic code. J. Mol. Biol.38: 367–379.

    Article  PubMed  CAS  Google Scholar 

  • —,J. Griffith, &L. E. Orgel. 1957. Codes without commas. Proc. Nat. Acad. Sci., U.S.A.43: 416–421.

    Article  CAS  Google Scholar 

  • Davidson, J. N. 1972. The biochemistry of the nucleic acids. Academic Press, New York. 396 pp.

    Google Scholar 

  • Dayhoff, M. O., ed. 1969. Atlas of protein sequence and structure. Volume 4. National Biomedical Research Foundation, Silver Spring, Maryland. 361 pp.

    Google Scholar 

  • —. 1971. Evolution of proteins.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam, pp. 392–419.

    Google Scholar 

  • Degani, C., &M. Halmann. 1972. Synthesis of α-D-glucose 1,6-di-phosphate in potentially prebiotic conditions. Nature New Biology235: 171–173.

    Article  PubMed  CAS  Google Scholar 

  • Dillon, L. S. 1962. Comparative cytology and the evolution of life. Evolution16: 102–117.

    Article  Google Scholar 

  • —. 1963. A reclassification of the major groups of organisms based upon comparative cytology. Syst. Zool.12: 71–82.

    Article  Google Scholar 

  • —. 1973. Evolution: Concepts and consequences. C. V. Mosby Co., St. Louis. 319 pp.

    Google Scholar 

  • Dodonova, N. Y., &A. Smorova. 1961. Photosynthesis of amino acids from a mixture of simple gases under the action of short-wave, ultra-violet radiation. Biofizika6: 164–175.

    Google Scholar 

  • Dose, K., &B. Rajewsky. 1957. Strahlenchemische Bildung von Aminen und Aminocarbonsäuren. Biochim. Biophys. Acta25: 225–226.

    Article  PubMed  CAS  Google Scholar 

  • —, &L. Zaki. 1971. Recent progress in the study and abiotic production of catalytically active polymers of α-amino acids.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 263–278.

    Google Scholar 

  • Dounce, A., M. Morrison, &K. J. Monty. 1955. Role of nucleic acid enzymes in peptide chain synthesis. Nature176: 597–598.

    Article  PubMed  CAS  Google Scholar 

  • Dube, S. K., &K. A. Marcker. 1969. The nucleotide sequence of N-formylmethionyl-transfer RNA. European J. Biochem.8: 256–262.

    Article  CAS  Google Scholar 

  • ——,B. F. C. Clark, &S. Cory. 1968. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature218: 233–234.

    Article  Google Scholar 

  • ————. 1969. The nucleotide sequence of N-formyl-methionyl-transfer RNA. European J. Biochem.8: 244–255.

    Article  CAS  Google Scholar 

  • Durant, D. H., &S. W. Fox. 1966. Enhancement of rate of decarboxylation of pyruvic acid and of hydrolysis of adenosine phosphates by thermal polyanhydro-α-amino acids. Fed. Proc.25: 342.

    Google Scholar 

  • Ertkson, E., &R. L. Erdkson. 1972. Transfer ribonucleic acid synthetase activity associated with avian myeloblastosis virus. J. Virol.92: 231–233.

    Google Scholar 

  • Evreinova, T., &A. Kuznetsova. 1959. Determination of the weight of separate coacervate drops by interference microscopy. Dokl. Akad. Nauk SSSR124: 688–691.

    Google Scholar 

  • Evstigneev, V. B. 1971. Possible role of the acid-base equilibrium in the evolution of the mechanism regulating primary photochemical processes of photosynthesis.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam, pp. 288–296.

    Google Scholar 

  • Fairchild, S. A., &W. E. Barnett. 1971. On the similarity between the tRNA’s of organelles and prokaryotes. Proc. Nat. Acad. Sci., U.S.A.68: 2972–2976.

    Article  Google Scholar 

  • Ferris, J. P., D. B. Donner, &A. P. Lobo. 1973. Possible role of hydrogen cyanide in chemical evolution: 1. Investigation of proposed direct synthesis of peptides from hydrogen cyanide. J. Mol. Biol.74: 499–510.

    Article  PubMed  CAS  Google Scholar 

  • Flores, J. J., &C. Ponnamperuma. 1972. Polymerization of amino acids under primitive earth conditions. J. Mol. Evol.2: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Fox, S. W. 1960. How did life begin. Science132: 200–208.

    Article  PubMed  CAS  Google Scholar 

  • —. 1965a. The origins of prebiological systems and of their molecular matrices. Academic Press, New York. 482 pp.

    Google Scholar 

  • —. 1965b. A theory of macromolecular and cellular origins. Nature205: 328–339.

    Article  PubMed  CAS  Google Scholar 

  • —. 1971. Self-assembly of the protocell from a self-ordered polymer.In: Prebiotic and biochemical evolution, ed. by A. P. Kimball, & J. Oró. North-Holland Publishing Company, Amsterdam. pp. 8–30.

    Google Scholar 

  • —, &D. Dose. 1972. Molecular evolution and the origin of life. W. H. Freeman & Co., San Francisco. 359 pp.

    Google Scholar 

  • —, &K. Harada. 1960. The thermal copolymerization of amino acids common to proteins. J. Amer. Chem. Soc.82: 3745–3752.

    Article  CAS  Google Scholar 

  • —, &T. Nakashima. 1967. Fractionation and characterization of an amidated thermal 1:1:1-protenoid. Biochim. Biophys. Acta140: 155–167.

    CAS  Google Scholar 

  • —, &C. R. Windsor. 1970. Synthesis of amino acids by the heating of formaldehyde and ammonia. Science170: 984–986.

    Article  PubMed  CAS  Google Scholar 

  • —,A. Yuki, T. V. Waehneldt, &J. C. Lacey. 1971. The primordial sequence, ribosomes, and the genetic code.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 252–262.

    Google Scholar 

  • Fraser, D. 1967. Viruses and molecular biology. Macmillan Company, New York. 124 pp.

    Google Scholar 

  • Friedmann, N., W. J. Haverland, &S. L. Miller. 1971. Prebiotic synthesis of the aromatic and other amino acids.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 123–135.

    Google Scholar 

  • —, &S. L. Miller. 1969. Phenylalanine and tyrosine synthesis under primitive earth conditions. Science166: 766–767.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, W. D., R. A. Sanchez, &L. E. Orgel. 1972. Studies in prebiotic synthesis. VII. Solid-state synthesis of purine nucleosides. J. Mol. Evol.1: 249.

    Article  PubMed  CAS  Google Scholar 

  • Gamow, G. 1954. Possible relation between deoxyribonucleic acid and protein structures. Nature173: 318.

    Article  CAS  Google Scholar 

  • —,A. Rich, &M. Yčas. 1956. The problem of information transfer from the nucleic acids to proteins. Adv. Biol. Med. Phys.4: 23–68.

    PubMed  CAS  Google Scholar 

  • —, &M. Ycas. 1955. Statistical correlation of protein and ribonucleic acid compositions. Proc. Nat. Acad. Sci., U.S.A.41: 1011–1019.

    Article  CAS  Google Scholar 

  • Gatlin, L. L. 1972. Information theory and the living system. Columbia University Press, New York. 210 pp.

    Google Scholar 

  • Gavaudan, P. 1971a. [The internal logic of the genetic coding table.] C. R. Hebd. Seances Acad. Sci., Ser. D. Sci. Natur.272: 1672–1675.

    CAS  Google Scholar 

  • —. 1971b. The genetic code and the origin of life.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 432–445.

    Google Scholar 

  • Goldberg, A. L., &R. E. Wittes. 1966. Genetic code: Aspects of organization. Science153: 420–424.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, H. M.,et al. 1968. Amber suppression: a nucleotide change in the anticodon of a tyrosine transfer RNA. Nature217: 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  • —,J. N. Abelson, A. Landy, S. Zadrazil, &J. D. Smith. 1970. The nucleotide sequences of tyrosine transfer RNAs ofEscherichia coli. Eur. J. Biochem.13: 461–483.

    Article  PubMed  CAS  Google Scholar 

  • Groth, W., &H. von Wyssenhoff. 1960. Photochemical formation of organic compounds from mixtures of simple gases. Planet. Space Sci.2: 79–85.

    Article  Google Scholar 

  • Hanson, E. D. 1966. Evolution of the cell from primordial living systems. Quart. Rev. Biol.41: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Harada, K., &S. W. Fox. 1964. Thermal synthesis of natural amino-acids from a postulated primitive terrestrial atmosphere. Nature201: 335–336.

    Article  PubMed  CAS  Google Scholar 

  • Hirsh, D. 1971. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol.58: 439–458.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, J. 1963. Evolution: The modern synthesis. Allen and Unwin, London. 645 pp.

    Google Scholar 

  • Ibanez, J., A. P. Kimball, &J. Oró. 1971. The effect of imidazole, cyanamide, and polyornithine on the condensation of nucleotides in aqueous systems.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 171–179.

    Google Scholar 

  • Ingram, V. M. 1963. The hemoglobins in genetics and evolution. Columbia University Press, New York. 165 pp.

    Google Scholar 

  • Ishikura, H., Y. Yamada, K. Murao, M. Saneyoshi, &S. Nishimura. 1969. The presence of N-[9-(β-D-ribofuranosyl) purin-6-carbamoyl] threonine in serine, methionine, and lysine transfer RNA’s fromEscherichia coli. Biochem. Biophys. Res. Comm.37: 990–997.

    Article  PubMed  CAS  Google Scholar 

  • Jett, M., &G. A. Jamieson. 1971. A homology between codon sequence and the linkage in glycoproteins. Carbohyd. Res.18: 446–468.

    Article  Google Scholar 

  • Jukes, T. H. 1969. Recent advances in studies of evolutionary relationships between proteins and nucleic acids. Space Life Sci.1: 469–494.

    Article  PubMed  CAS  Google Scholar 

  • —, &L. Gatlin. 1971. Recent studies concerning the coding mechanism.In: Progress in nucleic acid research and molecular biology, vol. 11, ed. by J. N. Davidson & W. E. Cohn. Academic Press, New York. pp. 303–350.

    Google Scholar 

  • Kaplan, R. W. 1971. The problem of chance in formation of protobionts by random aggregation of macromolecules.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Company, Amsterdam. pp. 319–329.

    Google Scholar 

  • Keil, F. 1912. Beiträge zur Physiologie der farblosen Schwefelbakterien. Beitrag. Biol. Pflanzen11: 335–372.

    Google Scholar 

  • Krasnovsky, A. A. 1971. The models of the evolution of photochemical electron transfer.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 279–287.

    Google Scholar 

  • Krzanowska, H. 1970. [Genetic code and evolution.] Wszechswiat7/8: 169–174.

    Google Scholar 

  • Lacey, J. C., &K. M. Pruitt. 1969. Origin of genetic code. Nature223: 799–804.

    Article  PubMed  CAS  Google Scholar 

  • Lagerkvist, U. 1968. An enzyme-substrate complex between valyl ribonucleic acid synthetase and ribonucleic acid specific for valine.In: Structure and function of transfer RNA and 5S-RNA, ed. by L. O. Fröholm & S. G. Laland. Academic Press, New York. pp. 143–149.

    Google Scholar 

  • Lesk, A. M. 1970. On the origin of the genetic code: Photochemical interaction between amino acids and nucleic acids not requiring adaptors. J. Theoret. Biol.27: 171–173.

    Article  CAS  Google Scholar 

  • Levine, L. 1973. Biology of the gene. 2nd ed. C. V. Mosby Company, St. Louis. 358 pp.

    Google Scholar 

  • Lewin, B. M. 1970. The molecular basis of gene expression. Wiley-Interscience, New York. 446 pp.

    Google Scholar 

  • Loew, G. H., M. S. Chada, &S. Chang. 1972. A molecular orbital and chemical study of aminoacetonitrile: a possible prebiotic peptide precursor. J. Theoret. Biol.35: 359–373.

    Article  CAS  Google Scholar 

  • Loftfield, R. B. 1972. The mechanism of aminoacylation of transfer RNA.In: Progress in nucleic acid research and molecular biology, vol. 12, ed. by J. N. Davidson & E. W. Cohn. Academic Press, New York. pp. 87–128.

    Google Scholar 

  • Madison, J. T., G. A. Everett, &H. Kung. 1966. Nucleotide sequence of a yeast tyrosine transfer RNA. Science153: 531–534.

    Article  PubMed  CAS  Google Scholar 

  • Maier, S., &R. G. E. Murray. 1965. The fine structure ofThioploca ingrica and a comparison withBeggiatoa. Canadian J. Microbiol.11: 645–655.

    Article  CAS  Google Scholar 

  • Matthews, C. N. 1971. The origin of proteins: heteropolypeptides from hydrogen cyanide and water.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam, pp. 231–235.

    Google Scholar 

  • Mednikov, B. M. 1971. The origin of ribosomes and the evolution of rRNA.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 425–431.

    Google Scholar 

  • Melcher, G. 1970. A new hypothesis on the evolution of the genetic code. Biophysics7: 25–28.

    CAS  Google Scholar 

  • Miklos, J. 1971. Notes on the genetic code: I. Analyzing Claviere’s data: Anticodon-amino acid assignments and miscoding through amino acid substitution. Studia Biophys.28: 223–230.

    CAS  Google Scholar 

  • Miller, S. L. 1953. A production of amino acids under possible primitive earth conditions. Science117: 528–529.

    Article  PubMed  CAS  Google Scholar 

  • —, &H. C. Urey. 1959. Organic compound synthesis on the primitive earth. Science130: 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, H. K., E. E. Snell, &R. J. Williams. 1940. Pantothenic acid. IX. The biological activity of hydroxypantothenic acid. J. Amer. Chem. Soc.62: 1791–1792.

    Article  CAS  Google Scholar 

  • Mizutani, T., M. Miyazuki, &S. Takemura. 1968. The primary structure of valine-I transfer ribonucleic acid fromTorulopsis utilis. II. Partial digestion with ribonuclease T1 and derivation of the complete sequence. J. Biochem.64: 839–848.

    PubMed  CAS  Google Scholar 

  • Model, P., R. E. Webster, &N. D. Zinder. 1969. The UGA codonin vitro: Chain termination and suppression. J. Mol. Biol.43: 177–190.

    Article  PubMed  CAS  Google Scholar 

  • Moore, G. W., J. Barnabas, &M. Goodman. 1973. A method for constructing maximum parsimony ancestral amino acid sequences on a given network. J. Theoret. Biol.38: 459.

    Article  CAS  Google Scholar 

  • Ninio, J. 1971. Codon-anticodon recognition: The missing triplet hypothesis. J. Mol. Biol.56: 63–82.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, S., Y. Yamada, &H. Ishikura. 1969. The presence of 2-methylthio-N82-isopentenyl) adenosine in serine and phenylalanine transfer RNA’s fromE. coli. Biochim. Biophys. Acta179: 517–520.

    PubMed  CAS  Google Scholar 

  • Noda, H., &C. Ponnamperuma. 1971. Polymer formation in a simulated Jovian atmosphere.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 236–244.

    Google Scholar 

  • Nordwig, A., andU. Hayduk. 1971. A contribution to the evolution of structural proteins.In: Prebiotic and biochemical evolution, ed. by A. P. Kimball & J. Oró. North-Holland Publishing Co., Amsterdam. pp. 148–152.

    Google Scholar 

  • Oparin, A. I. 1957. The origin of life on the earth. 3rd ed. Academic Press, New York. 495 pp.

    Google Scholar 

  • —. 1968. Genesis and evolutionary development of life. Academic Press, New York. 203 pp.

    Google Scholar 

  • —. 1971. Problem of the origin of life: present state and prospects. In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 3–9.

    Google Scholar 

  • Orgel, L. E. 1968. Evolution of the genetic apparatus. J. Mol. Biol.38: 381–393.

    Article  PubMed  CAS  Google Scholar 

  • —. 1972. A possible step in the origin of the genetic code. J. Chem.10: 287–292.

    CAS  Google Scholar 

  • Oró, J. 1963. Synthesis of organic compounds by high-energy electrons. Nature197: 971–974.

    Article  Google Scholar 

  • —, &S. S. Kamat. 1961. Amino-acid synthesis from hydrogen cyanide under possible earth conditions. Nature190: 442–443.

    Article  PubMed  Google Scholar 

  • Paecht-Horowttz, M. 1971. Polymerization of amino-acid phosphate anhydrides in the presence of clay minerals.In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 245–251.

    Google Scholar 

  • Palm, C., &M. Calvin. 1962. Primordial organic chemistry. I. Compounds resulting from electron irradiation of C14H4. J. Amer. Chem. Soc.84: 2115–2121.

    Article  CAS  Google Scholar 

  • Papentin, F. 1973. A Darwinian evolutionary system. II. Experiments on protein evolution and evolutionary aspects of the genetic code. J. Theoret. Biol.39: 417–430.

    Article  CAS  Google Scholar 

  • Peterkofsky, A., &C. Jesendky. 1969. The localization of N6-(Δ2-isopentenyl) adenosine among the acceptor species of transfer ribonucleic acid ofLactobacillus acidophilus. Biochemistry8: 3798–3807.

    Article  PubMed  CAS  Google Scholar 

  • Pinkerton, T. C., G. Paddock, &J. Abelson. 1972. Bacteriophage T4 tRNALeu. Nature New Biology240: C7-C8.

    Google Scholar 

  • Powers, D. M., &A. Peterkofsky. 1972. The presence of N-(purin-6-ylcarbamoyl) threonine in transfer ribonucleic acid species whose codons begin with adenine. J. Biol. Chem.247: 6394–6401.

    PubMed  CAS  Google Scholar 

  • Pringsheim, E. G. 1964. Heterotrophism and species concepts inBeggiatoa. Amer. J. Bot.51: 898–913.

    Article  Google Scholar 

  • Raacke, I. D. 1971. Molecular biology of DNA and RNA: An analysis of research papers. The C. V. Mosby Company, St. Louis. 291 pp.

    Google Scholar 

  • Ratner, V. A., &A. G. Bachinskii. 1972a. [Population model of occurrence of codon stable ambiguity in a genetic code.] Genetika8: 153–160.

    CAS  Google Scholar 

  • ——. 1972b. [Population models of degeneracy arising in genetic code. 11. Competition of 2 series for free nonsense.] Genetika8: 179–184.

    Google Scholar 

  • Rensing, U., &J. T. August. 1969. The 3′-terminus and the replication of phage RNA. Nature224: 853–856.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R. J. 1972. Structures of two glycyl-tRNAs fromStaphylococcus epidermidis. Nature New Biol.237: 44–45.

    Article  PubMed  CAS  Google Scholar 

  • Salthe, S. N. 1972. Evolutionary biology. Holt, Reinhart and Winston, Inc., New York. 437 pp.

    Google Scholar 

  • Sambrook, J. F., D. P. Fan, &S. Brenner. 1967. A strong suppressor specific for UGA. Nature214: 452–453.

    Article  PubMed  CAS  Google Scholar 

  • Saxinger, C., &C. Ponnamperuma. 1971. Experimental investigation on the origin of the genetic code. J. Molec. Evol.1: 63–73.

    Article  PubMed  CAS  Google Scholar 

  • ——, &C. Woese. 1971. Evidence for the interaction of nucleotides with immobilized amino acids and its significance for the origin of the genetic code. Nature New Biol.234: 172–174.

    Article  PubMed  CAS  Google Scholar 

  • Schapp, T. 1971. Dual information in DNA and evolution of genetic code. J. Theoret. Biol.32: 293–298.

    Article  Google Scholar 

  • Schoenheimer, R. 1942. The dynamic state of body constituents. Harvard University Press, Cambridge, Mass. 78 pp.

    Google Scholar 

  • Schutzenberger, M. P., P. Gavaudan, &J. Besson. 1969. Sur l’existence d’une certaine corrélation entre le poids moléculaire de acides aminés et le nombre de triplets intervenane dans leur codage. C.R. Acad. Sci. ParisD268: 1342–1344.

    Google Scholar 

  • Schwartz, A., &S. W. Fox. 1967. Condensation of cytidylic acid in the presence of polyphosphoric acid. Biochim. Biophys. Acta134: 9–16.

    CAS  Google Scholar 

  • Sen, G. C., &H. P. Ghosh. 1973. Coding properties of isoaccepting lysine transfer RNA species from baker’s yeast. Biochim. Biophys. Acta308: 106–116.

    PubMed  CAS  Google Scholar 

  • Simpson, G. G. 1949. The meaning of evolution: A study of the history of life and its significance for man. Yale University Press, New Haven, Conn. 364 pp.

    Google Scholar 

  • Smith, E. L., &E. Margoliash. 1964. Evolution of cytochrome c. Fed. Proc.23: 1243–1247.

    PubMed  CAS  Google Scholar 

  • Smith, J. D., J. N. Abelson, H. M. Goodman, A. Landy, &S. Brenner. 1968. Amber suppressor transfer ribonucleic acid.In: Structure and function of transfer RNA and 5S-RNA, ed by L. O. Fröholm & S. G. Laland. Academic Press, New York, pp. 37–51.

    Google Scholar 

  • Smith, J. M. 1966. The theory of evolution. 2nd ed. Penguin Books, Harmondsworth, England. 335 pp.

    Google Scholar 

  • Smith, K. C. 1968. The biological importance of U.V.-induced DNA-protein crosslinkingin vivo and its probable chemical mechanism. Photochem. Photobiol.7: 651–660.

    Article  CAS  Google Scholar 

  • —. 1969. Photochemical addition of amino acids to14C-uracil. Biochem. Biophys. Res. Comm.34: 354–357.

    Article  PubMed  CAS  Google Scholar 

  • —, &D. H. C. Meun. 1968. Kinetics of the photochemical addition of (35S) cysteine to polynucleotides and nucleic acids. Biochem.7: 1033–1037.

    Article  CAS  Google Scholar 

  • Squires, C., &J. Carbon. 1971. Normal and mutant glycine transfer RNAs. Nature New Biol.233: 274–275.

    PubMed  CAS  Google Scholar 

  • Stetten, M. R. 1949a. Metabolism of hydroxyproline. Fed. Proc.8: 256.

    Google Scholar 

  • —. 1949b. Some aspects of metabolism of hydroxyproline studied with the aid of isotopic nitrogen. J. Biol. Chem.181: 31–37.

    PubMed  CAS  Google Scholar 

  • Stiller, E. T., S. A. Harris, J. Finkelstein, J. C. Keresztesy, &K. Folkers. 1940. Pantothenic acid. VIII. The total synthesis of pure pantothenic acid. J. Amer. Chem. Soc.62: 1785–1790.

    Article  CAS  Google Scholar 

  • Takemura, S., T. Mizutani, &M. Miyazaki. 1968. The primary structure of valine-I transfer ribonucleic acid fromTorulopsis utilis. I. Complete digestion with pancreatic ribonuclease and ribonuclease T1. J. Biochem.64: 827–837.

    PubMed  CAS  Google Scholar 

  • —,M. Murakami, &M. Miyazaki. 1969a. Nucleotide sequence of isoleucine transfer RNA fromTorulopsis utilis. J. Biochem.65: 489–491.

    PubMed  CAS  Google Scholar 

  • ———. 1969b. The primary structure of isoleucine transfer ribonucleic acid fromTorulopsis utilis. J. Biochem.65: 553–566.

    PubMed  CAS  Google Scholar 

  • Thiebe, R., H. G. Zachau, L. Baczynskyj, K. Biemann, &J. Sonnenbichler. 1971. Study on the properties and structure of the modified base Y+ of yeast tRNAphe. Biochim. Biophys. Acta240: 163–169.

    PubMed  CAS  Google Scholar 

  • Urey, H. C. 1960. Primitive planetary atmospheres and the origin of life.In: Aspects of the origin of life, ed. by M. Florkin. Pergamon Press, New York. pp. 8–14.

    Google Scholar 

  • Usdin, V. R., M. A. Mrrz, &J. Killos. 1967. Inhibition and reactivation of the catalytic activity of a thermal α-amino acid copolymer. Arch. Biochem. Biophys.122: 258–261.

    Article  PubMed  CAS  Google Scholar 

  • Vegotsky, A., &S. W. Fox. 1959. Pyropolymerization of amino acids to proteinoids with phosphoric acid or polyphosphoric acid. Fed. Proc.18: 343.

    Google Scholar 

  • von Rexer, E., &B. Pegel. 1970. Die Aminosäure-Häufigkeiten in Proteinen und der genetische code. Biol. Zentralbl.89: 711–721.

    CAS  Google Scholar 

  • Waehneldt, T. V., &S. W. Fox. 1967. Phosphorylation of nucleosides with polyphosphoric acid. Biochim. Biophys. Acta134: 1–8.

    CAS  Google Scholar 

  • Wald, G. 1964. The origins of life. Proc. Nat. Acad. Sci., U.S.A.52: 595–611.

    Article  CAS  Google Scholar 

  • Watson, J. D. 1965. The replication of living molecules.In: Light and life in the universe, ed. by S. T. Butler & H. Messel. Pergamon Press, New York, pp. 297–340.

    Google Scholar 

  • West, E. S., &W. R. Todd. 1961. Textbook of biochemistry. 3rd ed. Macmillan Company, New York. 1423 pp.

    Google Scholar 

  • White, B. N., &S. T. Bayley. 1972. Methionine transfer RNAs from the extreme halophile,Halobacterium cutirubrum. Biochim. Biophys. Acta272: 583–587.

    PubMed  CAS  Google Scholar 

  • —, &G. M. Tener. 1973. Properties of tRNAphe fromDrosophila. Biochim. Biophys. Acta312: 267–275.

    PubMed  CAS  Google Scholar 

  • Woese, C. R. 1965. On the evolution of the genetic code. Proc. Nat. Acad. Sci., U.S.A.54: 1546–1552.

    Article  CAS  Google Scholar 

  • —. 1967. The genetic code: The molecular basis for genetic expression. Harper & Row, Publishers, New York. 300 pp.

    Google Scholar 

  • —. 1969. The biological significance of the genetic code. Progr. Mol. Subcell. Biol.1: 5–46.

    CAS  Google Scholar 

  • —. 1970. The problem of evolving a genetic code. Bioscience20: 471–485.

    Article  CAS  Google Scholar 

  • Wolf, G., &C. R. A. Berger. 1958. The metabolism of hydroxyproline in the intact rat. Incorporation of hydroxyproline into protein and urinary metabolites. J. Biol. Chem.30: 231–240.

    Google Scholar 

  • Yang, C. C., &J. Oró. 1971. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process. In: Chemical evolution and the origin of life, ed. by R. Buvet & C. Ponnamperuma. North-Holland Publishing Co., Amsterdam. pp. 155–170.

    Google Scholar 

  • Yaniv, M., &B. G. Barrell. 1971. Sequence relationship of three valine acceptor tRNAs fromEscherichia coli. Nature New Biol.233: 113–114.

    PubMed  CAS  Google Scholar 

  • Yot, P., M. Pinck, A. L. Haenni, H. M. Duranton, &F. Chapeville. 1970. Valine-specific tRNA-like structure in turnip yellow mosaic virus RNA. Proc. Nat. Acad. Sci., U.S.A.67: 1345–1352.

    Article  CAS  Google Scholar 

  • Zipser, D. 1967. UGA: a third class of suppressible polar mutants. J. Mol. Biol.,29:441–445.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillon, L.S. The origins of the genetic code. Bot. Rev 39, 301–345 (1973). https://doi.org/10.1007/BF02859159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02859159

Keywords

Navigation