Skip to main content
Log in

Translocation in fungi

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

LIterature Cited

  • Abbot, M. T. J., &J. F. Grove. 1959a. Uptake and translocation of organic compounds by fungi. I. Microspectrophotometry in the study of translocation. Exp. Cell Res.17: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • —,—. 1959b. Uptake and translocation of organic compounds by fungi. II. Griseofulvin. Exp. Cell Res.17: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R. F.. 1928. A cytological study ofPuccinia glumarum onBromus marginatus andTriticum vulgare. Jour. Agr. Res.36: 487–513.

    Google Scholar 

  • Arthur, J. F. 1897. The movement of protoplasm in coenocytic hyphae. Ann. Bot.11: 491–507.

    Google Scholar 

  • Aytoun, R. S. C. 1956. The effects of griseofulvin on certain phytopathogenic fungi. Ann. Bot. N.S.20: 297–305.

    CAS  Google Scholar 

  • Bennett, C. W. 1956. Biological relations of plant viruses. Ann. Rev. Plant Physiol.7: 143–170.

    Article  CAS  Google Scholar 

  • Bensaude, M. 1917. Sur la sexualité chez les Champignons basidiomycètes. Compt. Rend. Acad. Sci. (Paris)165: 286–289.

    Google Scholar 

  • Bjorkman, E. 1960.Monotropa hypopitys L. an epiparasite on tree roots. Physiol. Plantarum13: 308–327.

    Article  CAS  Google Scholar 

  • Blair, I. D.. 1943. Behavior of the fungusRhizoctonia solani Kühn in the soil. Ann. Appl. Biol.30: 118–127.

    Article  CAS  Google Scholar 

  • Bonner, J. T., A. A. Hoffman, W. T. Morioka, &A. D. Chiquoine. 1957. The distribution of polysaccharides and basophilic substances during the development of the mushroomCoprinus. Biol. Bull.112: 1–6.

    Article  CAS  Google Scholar 

  • —,K. K. Kane, &R. H. Levey. 1956. Studies on the mechanics of growth in the common mushroom,Agaricus campestris. Mycologia48: 13–19.

    Article  Google Scholar 

  • Bose, S. R., &P. Bonet-Maury. 1960. Metabolism of polypores with phosphorus-32. Nature185: 828–830.

    Article  PubMed  CAS  Google Scholar 

  • Bracker, C. E., &E. E. Butler. 1964. Function of the septal pore apparatus inRhizoctonia solani during protoplasmic streaming. Jour. Cell Biol.21: 152–157.

    Article  CAS  Google Scholar 

  • Brian, P. W. 1949. Studies on the biological activity of Griseofulvin. Ann. Bot. N.S.13: 59–77.

    CAS  Google Scholar 

  • Brodie, H. J. 1948. Tetrapolarity and unilateral diploidization in the bird’s nest fungus,Cyathus stercoreus. Amer. Jour. Bot.35: 312–320.

    Article  Google Scholar 

  • Buller, A. H. R. 1931. Researches on fungi IV. Longmans, Green and Co., London, 329 pp.

    Google Scholar 

  • —. 1933. Researches on fungi V. Longmans, Green and Co., New York, 416 pp.

    Google Scholar 

  • Butler, G. M. 1957. The development and behavior of mycelial strands inMerulius lacrymans (Wulf.) Fr. I. Strand development during growth from a food base through a non-nutrient medium. Ann. Bot. N.S.21: 523–537.

    Google Scholar 

  • Butler, J. B. 1943. Control of dry rot. Architectural design and building practice. Irish Build. Eng., cited in Rev. Appl. Mycol.28: 261.

    Google Scholar 

  • Chavez, H. B., Alice M. Boyle, H. E. Bloss, &G. A. Greis. 1967. Factors affecting production of sclerotia byPhymatotrichum omnivorum. (Abstr.) Phytopathology57: 1004.

    Google Scholar 

  • Cochrane, V. W. 1958. Physiology of fungi. John Wiley and Sons, Inc., New York, 524 pp.

    Google Scholar 

  • Crafts, A. S. 1961. Translocation in plants. Holt, Rinehart and Winston, New York, 182 pp.

    Google Scholar 

  • Darken, Marjorie A. 1962. Absorption and transport of fluorescent brighteners by microorganisms. Appl. Microbiol.10: 387–393.

    PubMed  CAS  Google Scholar 

  • De Vries, H. 1885. Uber die Bedeutung der Circulation und der Rotation des Protoplasma für den Stofftransport in der Pflanze. Bot. Zeitung43: 1–6, 16–26.

    Google Scholar 

  • Dickson, H. 1934. Studies inCoprinus sphaerosporus. The pairing behavior and the characteristics of various haploid and diploid strains. Ann. Bot.48: 527–547.

    Google Scholar 

  • —. 1935. Studies inCoprinus sphaerosporus. II. The inheritance of various morphological and physiological characters. Ann. Bot.49: 181–204.

    Google Scholar 

  • —. 1936. Observations on inheritance inCoprinus macrorhizus. Ann. Bot.50: 719–733.

    Google Scholar 

  • Dodge, B. O. 1935. The mechanics of sexual reproduction inNeurospora. Mycologia27: 418–438.

    Article  Google Scholar 

  • Dowding, E. S., &A. Bakerspigel. 1954. The migrating nucleus. Can. Jour. Microbiol.1: 69–78.

    Google Scholar 

  • —, &A. H. R. Buller. 1940. Nuclear migration inGelasinospora. Mycologia32: 471–488.

    Article  Google Scholar 

  • —, &E. H. Gawan. 1942. The migration of fungal nuclei in an electric field. Can. Jour. Res. C20: 92–100.

    Google Scholar 

  • Ellis, E. H. 1929.Armillaria mellea in a mine-working. Trans. Brit. Mycol. Soc.14: 305–307.

    Google Scholar 

  • Findlay, W. P. K. 1951. The development ofArmillaria mellea rhizomorphs in a water tunnel. Trans. Brit. Mycol. Soc.34: 146.

    Google Scholar 

  • Fulton, I. W. 1950. Unilateral nuclear migration and the interactions of haploid mycelia in the fungusCyathus stercoreus. Proc. Natl. Acad. Sci. U.S.36: 306–312.

    Article  CAS  Google Scholar 

  • Gandy, D. G. 1960. A transmissible disease of cultivated mushrooms (“watery stipe”). Ann. Appl. Biol.48: 427–430.

    Article  Google Scholar 

  • —. 1962. Studies on die-back of mushrooms. Mushroom Sci.5: 468–479.

    Google Scholar 

  • Garrett, S. D. 1954. The function of the mycelial strand in substrate colonization by the cultivated mushroom,Psalliota hortensis. Trans. Brit. Mycol. Soc.37: 51–57.

    Google Scholar 

  • —. 1956a. Rhizomorph behavior inArmillaria mellea (Vahl.) Quel. V. Logistics of infection. Ann. Bot. N.S.20: 193–209.

    Google Scholar 

  • —. 1956b. Biology of root-infecting fungi. Cambridge University Press, Cambridge, 293 pp.

    Google Scholar 

  • Giesy, R. M., &P. R. Day. 1965. The septal pores ofCoprinus lagopus in relation to nuclear migration. Amer. Jour. Bot.52: 287–293.

    Article  Google Scholar 

  • Grehn, J. 1932. Untersuchungen uber Gestalt and Funktion der Sporangientrager bei den Mucorineen. II. Der Wasser and Stofftransport. Jahrb. Wiss. Bot.76: 176–207.

    Google Scholar 

  • Greis, H. 1942. Relative Sexualitat und sterilisationsfactonen beir dem HymenomyzetenSolenia. Biol. Zentralbl.62: 46–92.

    Google Scholar 

  • Grossbard, Erna. 1958. Autoradiography of fungi through a layer of soil and in agar culture. Nature182: 854–856.

    Article  PubMed  CAS  Google Scholar 

  • —, &D. R. Stranks. 1959. Translocation of cobalt-60 and caesium-137 by fungi in agar and soil cultures. Nature184: 310–314.

    Article  PubMed  CAS  Google Scholar 

  • Gruen, H. E. 1963. Endogenous growth regulation in carpophores ofAgaricus bisporus. Plant Physiol.38: 652–667.

    PubMed  CAS  Google Scholar 

  • Hagimoto, H., &M. Konishi. 1959. Studies on the growth of fruit body of fungi I. Existence of a hormone active to the growth of fruit body inAgaricus bisporus (Lange) Sing. Bot. Mag. (Tokyo)72: 359–366.

    Google Scholar 

  • —,—. 1960. Studies on the growth of fruit body of fungi II. Activity and stability of the growth hormone in the fruit body ofAgaricus bisporus (Lange) Sing. Bot. Mag. (Tokyo)73: 283–287.

    CAS  Google Scholar 

  • Harley, J. L. 1959. The biology of mycorrhiza. Leonard Hill Books Limited, London, 233 pp.

    Google Scholar 

  • Hawker, L. E. 1950. Physiology of fungi. Univ. London Press, London, 360 pp.

    Google Scholar 

  • Hill, E. P. 1965. Uptake and translocation. 2. Translocation.In: “The Fungi I,” ed. byG. C. Ainsworth & A. S. Sussman, Academic Press, New York, 748 pp. (pp. 457–463.)

    Google Scholar 

  • Kamiya, N. 1959. Protoplasmic streaming. Protoplasmatologia8(3a): 1–199.

    Google Scholar 

  • — 1960. Physics and chemistry of protoplasmic streaming. Ann. Rev. Plant Physiol.11: 323–340.

    Article  CAS  Google Scholar 

  • Kavanau, J. L. 1965. Structure and function in biological membranes. VII. Holden-Day, San Francisco, 760 pp.

    Google Scholar 

  • Kimura, K. 1954a. Diploidisation in the Hymenomycetes. II. Nuclear behavior in the Buller phenomenon. Biol. Jour. Okayoma Univ.4: 1–59.

    Google Scholar 

  • —. 1954b. On the diploidisation by the doubly compatible diploid mycelium in the Hymenomycetes. Bot. Mag. (Tokyo)67: 238–242.

    Google Scholar 

  • King, C. J., H. L. Loomis, &C. Hope. 1931. Studies on sclerotia and mycelial strands of the cotton root rot fungus. Jour. Agr. Res.42: 827–840.

    Google Scholar 

  • King, Myrna K., &P. K. Isaac. 1964. The uptake of glucose-6-T and glycine-2-T byRhizoctonia solani Kuhn. Can. Jour. Bot.42: 815–821.

    CAS  Google Scholar 

  • Kneebone, L. R., J. D. Lockard, &R. A. Hager. 1962. Infectivity studies with “X-disease.” Mushroom Sci.5: 461–467.

    Google Scholar 

  • Kniep, H. 1920. Uber morphologische und physiologische Geschlechlsdifferenzierung (Untersuchungen an Basidiomyceten.) Verh. Physikal. Mediz. Ges. Würzburg46: 1–18.

    Google Scholar 

  • Kritsky, M. S., I. S. Kulaev, L. M. Klebanova, &A. N. Belozersky. 1965a. Two pathways of phosphate transport in the sporophore of the field mushroom,Agaricus bisporus. Dokl. Akad. Nauk USSR160: 949–952.

    Google Scholar 

  • —,—,I. P. Mayorova, D. A. Fais, &A. N. Belozersky. 1965b. Translocation of phosphates in sporophores ofAgaricus bisporus. Biokhimiya30: 778–789.

    Google Scholar 

  • Lambert, E. B.. 1962. Cropping experiments to test the efficiency of nutrient translocation by cultivated mushrooms. Mushroom Sci.5: 340–347.

    Google Scholar 

  • Lehfeldt, W. 1923. Uber die Entstehung des Paarkernmycels bei heterothallischen Basidiomyceten. Hedwigia64: 30–51.

    Google Scholar 

  • Lilly, V. G., &H. L. Barnett. 1951. Physiology of the fungi. McGraw-Hill Book Co., Inc., New York, 464 pp.

    Google Scholar 

  • Lindberg, G. D.. 1959. A transmissible disease ofHelminthosporium victoriae. Phytopathology49: 29–32.

    Google Scholar 

  • Littlefield, L. J. 1966. Translocation of phosphorus-32 in sporophores ofCollybia velutipes. Physiol. Plantarum19: 264–270.

    Article  CAS  Google Scholar 

  • —. 1967. Phosphorus-32 accumulation inRhizoctonia solani sclerotia. Phytopathology57: 1053–1055.

    Google Scholar 

  • —, &C. Forsberg. 1965. Absorption and translocation of phosphorus-32 byChara globularis Thuill. Physiol. Plantarum18: 291–296.

    Article  CAS  Google Scholar 

  • —,R. D. Wilcoxson, &T. W. Sudia. 1965a. Translocation in sporophores ofLentinus tigrinus. Amer. Jour. Bot.52: 599–605.

    Article  Google Scholar 

  • —,—,—. 1965b. Translocation of phosphorus-32 inRhizoctonia solani. Phytopathology55: 536–542.

    Google Scholar 

  • Lucas, R. L. 1960. Transport of phosphorus by fungal mycelium. Nature188: 763–764.

    Article  PubMed  CAS  Google Scholar 

  • Madelin, M. F.. 1956. Studies on the nutrition ofCoprinus lagopus Fr., especially as affecting fruiting. Ann. Bot. N.S.20: 307–330.

    CAS  Google Scholar 

  • —. 1960. Visible changes in the vegetative mycelium ofCoprinus lagopus Fr. at the time of fruiting. Trans. Brit. Mycol. Soc.43: 105–110.

    Google Scholar 

  • Melin, E., &H. Nilsson. 1950. Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol. Plantarum3: 88–92.

    Article  Google Scholar 

  • —,—. 1952. Transport of labelled nitrogen from an ammonium source to pine seedlings through mycorrhizal mycelium. Svensk Bot. Tidsk.46: 281–285.

    CAS  Google Scholar 

  • —,—. 1953. Transfer of labelled nitrogen from glutamic acid to pine seedlings through the mycelium ofBoletus variegatus (Sw.) Fr. Nature171: 134.

    Article  PubMed  CAS  Google Scholar 

  • —,—. 1954. Transport of labelled phosphorus to pine seedlings through the mycelium ofCortinarius glaucopus (Schaeff. ex Fr.) Fr. Svensk Bot. Tidsk.48: 555–558.

    CAS  Google Scholar 

  • —,—. 1955. Ca45 used as indicator of transport of cations to pine seedlings by means of mycorrhizal mycelium. Svensk Bot. Tidsk.49: 119–122.

    Google Scholar 

  • —,—. 1957. Transport of C14 labelled photosynthate to the fungal associate of pine mycorrhiza. Svensk Bot. Tidsk.51: 166–186.

    CAS  Google Scholar 

  • —,—. 1958. Translocation of nutritive elements through mycorrhizal mycelia to pine seedlings. Bot. Notiser111: 252–256.

    Google Scholar 

  • —,—, &E. Hackaylo. 1958. Translocation of cations to seedlings ofPinus virginiana through mycorrhizal mycelium. Bot. Gaz.119: 243–246.

    Article  CAS  Google Scholar 

  • Monson, A. M., &T. W. Sudia. 1963. Translocation inRhizoctonia solani. Bot. Gaz.124: 440–443.

    Article  Google Scholar 

  • Moore, R. T., &J. H. McAlear. 1961. Fine structure of mycota. 7. Observations on septa of Ascomycetes and Basidiomycetes. Amer. Jour. Bot.49: 86–94.

    Article  Google Scholar 

  • Nakajima, H. 1964. The mechanochemical system behind streaming inPhysarum.In: “Primitive Motile Systems in Cell Biology,” ed. byR. D. Allen &N. Kamiyo, Academic Press, New York, 624 pp. (pp. 111–123.)

    Google Scholar 

  • Napper, R. P. N. 1938. Root disease and underground pests in new plantings. Planter19: 453–455.

    Google Scholar 

  • Nielsen, G., &C. R. Rasmussen. 1962. Transportation capabilities of mushroom mycelium determined by means of radioactive isotopes. Mushroom Sci.5: 348–383.

    Google Scholar 

  • Noble, Mary. 1937. The morphology and cytology ofTyfhula trifolii Rostr. Ann. Bot. N.S.1: 67–98.

    Google Scholar 

  • Papazian, H. P. 1949. The incompatibility factors inSchizophyllum commune. Amer. Jour. Bot.36: 813 (Suppl.).

    Google Scholar 

  • —. 1950. Physiology of the incompatibility factors inSchizophyllum commune. Bot. Gaz.112: 143–163.

    Article  Google Scholar 

  • Parker, B. C. 1963. Translocation in the giant kelpMacrocystis. (Abstr.) Amer. Jour. Bot.50: 631.

    Google Scholar 

  • —. 1965. Translocation in the giant kelpMacrocystis. I. Rates, direction, quantity of C14 labelled products and fluorescein. Jour. Phycology1: 41–46.

    Article  CAS  Google Scholar 

  • Plunkett, B. E. 1958. Translocation and pileus formation inPolyporus brumalis. Ann. Bot. N.S.22: 237–249.

    Google Scholar 

  • Quintanilha, A. 1938-39. Etude génétique du phénomène de Buller. Bol. Soc. Broteriana (Ser. 2)13: 425–486.

    Google Scholar 

  • —, &S. Balle. 1938. Etude génétique des phénomènes de nanisme chez les hyménomycètes. Compt. Rend. Soc. Biol.129: 191–194.

    Google Scholar 

  • Raper, J. R. 1953. Tetropolar sexuality. Quart. Rev. Biol.28: 233–259.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, O. 1950. Translocation in fungi. (Abstr.) Proc. 7th Int. Bot. Congr. (Stockholm)7: 453–454.

    Google Scholar 

  • Robinson, R. K., &R. L. Lucas. 1963. The use of isotypically labelled mycelia to investigate the host range and rate of spread ofOphiobolus graminis. New Phytol.62: 50–52.

    Article  Google Scholar 

  • Sanford, G. B., &W. P. Skoropad. 1955. Distribution of nuclei in hyphal cells ofRhizoctonia solani. Can. Jour. Microbiol.1: 412–415.

    Article  CAS  Google Scholar 

  • Schroter, A. 1905. Uber Protoplasmastromung bei Mucorineen. Flora95: 1–30.

    Google Scholar 

  • Schutte, K. H. 1956. Translocation in the fungi. New Phytol.55: 164–182.

    Article  Google Scholar 

  • Silberman, Meira B. 1966. Mechanism of phosphate absorption inRhizoctonia solani. M.S. Thesis, Dep. Plant Path., Univ. Minnesota, 72 pp.

  • Snider, P. J. 1963. Genetic evidence for nuclear migration in Basidiomycetes. Genetics48: 47–56.

    PubMed  CAS  Google Scholar 

  • —. 1965. Incompatibility and nuclear migration.In: “Incompatibility in Fungi,” ed. byK. Esser &J. R. Raper, Springer-Verlag, New York, 124 pp. (pp. 52–70.)

    Google Scholar 

  • —, &J. R. Raper. 1958. Nuclear migration in the basidiomyceteSchizophyllum commune. Amer. Jour. Bot.45: 538–546.

    Article  Google Scholar 

  • Subbarayudu, S., R. D. Wilcoxson, &T. W. Sudia. 1966. Translocation of phosphorus-32 in sclerotia ofPhymatotrichum omnivorum. (Abstr.) Phytopathology56: 903.

    Google Scholar 

  • -,-,-. 1968. Translocation into sclerotia ofSclerotium rolfsii. Amer. Jour. Bot. 55: (In Press.)

  • Swiezynski, K. M., &P. R. Day. 1960. Migration of nuclei inCoprinus lagopus. Genetical Research1: 129–139.

    Article  Google Scholar 

  • Thrower, Stella L., &L. B. Thrower. 1961. Transport of carbon in fungal mycelium. Nature190: 823–824.

    Article  PubMed  CAS  Google Scholar 

  • Wessels, J. G. H. 1965. Morphogenesis and biochemical processes inSchizophyllum commune Fr. Wentia13: 1–113.

    Google Scholar 

  • Wheeler, H. W. 1951. The use of C14 labelled sucrose for “tagging” fungus mycelium. (Abstr.) Phytopathology41: 38.

    Google Scholar 

  • —. 1952. The use of radiocarbon for tagging fungi. Phytopathology42: 431–435.

    CAS  Google Scholar 

  • Wilcoxson, R. D., &S. Subbarayudu. 1968. Translocation to and accumulation of phosphorus-32 in sclerotia ofSclerotium rolfsii. Can. Jour. Bot.46: 85–88.

    Article  Google Scholar 

  • Wolf, F. A., &F. T. Wolf. 1947. The fungi II. John Wiley and Sons, Inc., New York, 538 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper No. 1290 Miscellaneous Journal Series. Minnesota Agricultural Experiment Station. Supported in part by National Science Foundation Research Grant B3174.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilcoxson, R.D., Sudia, T.W. Translocation in fungi. Bot. Rev 34, 32–50 (1968). https://doi.org/10.1007/BF02858620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858620

Keywords

Navigation