Skip to main content
Log in

Alarm systems in higher plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The defenses of higher plants against a variety of biotic and abiotic stress agents can be grouped into two categories: Preformed and Induced. Induced defensive responses by the plant, or “alarms”—the subject of the present review—can be localized or systemic. Certain alarms, especially those which are induced by necrotizing pathogens, are protective against a wide variety of biotic stress agents. Other responses appear protective but the degree of host plant involvement is unclear. Finally, there are a few induced plant responses which, although protective, do not easily fit our criteria of an “alarm.” Oligosaccharins may be involved as signals in both anti-herbivore and anti-pathogen alarm systems. Other specific components of plant alarms appear to be induced by only one type of stress agent. The specificity of protection, mechanisms of various alarms and comparisons between them are presented.

Резюме

Защиты высших растений от разнообразия биотических и абиотических напряжений распределяются по двум категориям: собственным и индуцированным. Последние индуцированные защитные реакции растения (так называемые “тревоги,” которые представляют собой тему настоящей рецензии) в свою очередь группируются на локальные и систематические. Некоторые реакции, особенно те, которые вызываются смертоносными патогенами, защищают от большого разнообразия биотических напряжений. С другой стороны, некоторые индивидуальные тревоги можно вызывать разными биотическими напряжениями. Другие реакции кажутся защитными, но степень участия растения-хозяина неясна. Наконец немногие индивидуальные реакции, хотя и являются защитным и, нелегко соответствуют нашему определению “тревоги.” Возможно, что олигосахарины участвуют в качестве сигналов и в антитравоядных и в антипатогенных системах тревожных сигналов. Кажется, что другие отдельные составные части систем тревожных сигналов вызываются всего одним типом напряжения. В рецензии и представляются специфичность защиты, механизмы разных “тревог” и сравнения между ними.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adam, A., T. Farkas, G. Somlyai, M. Hevesi &Z. Kiraly. 1989. Consequence of 0° generation during a bacterially induced hypersensitive reaction to tobacco: Deterioration of membrane lipids. Physiol. Mol. Plant Path.34: 13–26.

    CAS  Google Scholar 

  • Agrios, G. N. 1988. Plant pathology, 3rd ed. Academic Press, San Diego.

    Google Scholar 

  • Ahl, P., J. F. Antoniw, R. F. White &S. Gianinazzi. 1985. Biochemical and serological characterization of b-proteins fromNicotiana species. Pl. Mol. Biol.4: 31–37.

    CAS  Google Scholar 

  • — &S. Gianinazzi. 1982. b-Protein as a constitutive component in highly (TMV) resistant interspecific hybrids ofNicotiana glutinosa ×Nicotiana debneyi. Pl. Sci. Lett.26: 173–181.

    CAS  Google Scholar 

  • Altersheim, P. &A. G. Darvill. 1985. Oligosaccharins. Sci. Amer.253: 58–64.

    Google Scholar 

  • — &B. S. Valent. 1978. Host-pathogen interactions in plants. J. Cell Biol.78: 627–643.

    Google Scholar 

  • Antoniw, J. F., J. S. H. Kueh, D. G. A. Walkey &R. F. White. 1981. The presence of pathogenesis-related proteins in callus of Xanthi-nc tobacco. Phytopath. Z.101: 179–184.

    CAS  Google Scholar 

  • —,C. E. Ritter, W. S. Pierpoint &L. C. van Loon. 1980. Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J. Gen. Virol.47: 79–87.

    CAS  Google Scholar 

  • — &R. F. White. 1983. Biochemical properties of the pathogenesis-related proteins from tobacco. Neth. J. Pl. Path.89: 255–264.

    CAS  Google Scholar 

  • Asselin, A., J. Grenier &F. Cote. 1985. Light-influenced extracellular accumulation of b(pathogenesis-related) proteins inNicotiana green tissue induced by various chemicals or prolonged floating on water. Canad. J. Bot.63: 1276–1283.

    CAS  Google Scholar 

  • Baldwin, I. T. &J. C. Schultz. 1983. Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants. Science221: 277–279.

    PubMed  CAS  Google Scholar 

  • Baydoun, E. A. -H. &S. C. Fry. 1985. The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone. Planta165: 269–276.

    CAS  Google Scholar 

  • Bell, A. A. 1981. Biochemical mechanisms of disease resistance. Annu. Rev. Pl. Physiol.32: 21–81.

    CAS  Google Scholar 

  • Benz, G. 1977. Insect-induced resistance as a means of self defense in plants. Eucarpia/IOBC Working Group Breeding for Resistance to Insects and Mites. Bulletin SROP 1977/8, pp. 155–159.

  • Bishop, P. D., D. J. Makus, G. Pearce &C. A. Ryan. 1981. Proteinase inhibitor-inducing activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc. Natl. Acad. Sci. USA78: 3536–3540.

    PubMed  CAS  Google Scholar 

  • —,G. Pearce, J. E. Bryant &C. A. Ryan. 1984. Isolation and characterization of the proteinase inhibitor inducing factor from tomato leaves: Identity and activity of polyand oligogalacturonide fragments. J. Biol. Chem.259: 13172–13177.

    PubMed  CAS  Google Scholar 

  • Bos, L. 1970a. Symptoms of virus diseases in plants, 2nd ed. Centre for Agricultural Publishing and Documentation. Wageningen, The Netherlands.

    Google Scholar 

  • —. 1970b. The identification of three new viruses isolated fromWisteria andPisum in The Netherlands, and the problem of variation within the potato virus Y group. Neth. J. Pl. Path.76: 8–46.

    Google Scholar 

  • Broadway, R. M., S. S. Duffey, G. Pearce &C. A. Ryan. 1986. Plant proteinase inhibitors: A defense against herbivorous insects? Entomol. Exp. Appl.41: 33–38.

    CAS  Google Scholar 

  • Bryant, J. P., G. D. Wieland, T. Clausen &P. Kuropat. 1985. Interactions of snowshoe hare and feltleaf willow in Alaska. Ecology66: 1867–1878.

    Google Scholar 

  • Bruce, R. J. &C. A. West. 1982. The role of pectic fragments of the plant cell wall in elicitation by a fungal endopolygalacturonase. Pl. Physiol.69: 1181–1188.

    CAS  Google Scholar 

  • Burr, B. &T. Shenk. 1983. Summary. Pages 185–189in H. G. Robertson, S. H. Howell, M. Zaitlin & R. L. Malmberg (eds.), Plant infectious agents: Viruses, viroids, virusoids and satellite. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Cervone, E., M. G. Hahn, G. DeLorenzo, A. Darvill &P. Albersheim. 1989. Host-pathogen interactions XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol.90: 542–548.

    PubMed  CAS  Google Scholar 

  • Chailakhyan, M. K. H. 1968. Internal factors of plant flowering. Ann. Rev. Pl. Physiol.19: 1–36.

    Google Scholar 

  • Chessin, M. 1982. Interference in plant virus infection: Ultraviolet light and systemic acquired resistance. Phytopath. Z.104: 279–283.

    Google Scholar 

  • —. 1983. Is there a plant interferon? Bot. Rev.49: 1–28.

    Google Scholar 

  • Corbin, D. R., N. Sauer &C. J. Lamb. 1987. Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. Mol. Cell Biol.7: 4337–4344.

    PubMed  CAS  Google Scholar 

  • Cruickshank, I. A. M. 1980. Defenses triggered by the invader: Chemical defenses. Pages 247–268in J. G. Horsfall & E. B. Cowling (eds.), Plant disease: An advanced treatise. Vol. V. How plants defend themselves. Academic Press, New York.

    Google Scholar 

  • Dalkin, K. &D. J. Bowles. 1989. Local and systemic changes in gene expression induced in tomato plants by wounding and by elicitor treatment. Planta179: 367–375.

    CAS  Google Scholar 

  • Darvill, A. G. &P. Albersheim. 1984. Phytoalexins and their elicitors—A defense against microbial infection in plants. Ann. Rev. Pl. Physiol.35: 243–275.

    CAS  Google Scholar 

  • Davies, E. &A. Schuster. 1981. Intercellular communication in plants: Evidence for a rapidly generated, bidirectionally transmitted wound signal. Proc. Natl. Acad. Sci. USA78: 2422–2426.

    PubMed  CAS  Google Scholar 

  • DeWit, P. J. G. M. 1985. Induced resistance to fungal and bacterial diseases. Pages 405–424in R. S. S. Fraser (ed.), Mechanisms of resistance to plant diseases. Martinus Nijhoft/DR W. Junk Publishers, The Netherlands.

    Google Scholar 

  • Diaz-Ruiz, J. R. &J. M. Kaper. 1977. Cucumber mosaic virus-associated RNA 5. III. Little sequence homology between CARNA 5 and helper virus. Virology80: 204–213.

    PubMed  CAS  Google Scholar 

  • Dyson, J. G. &M. Chessin. 1961. Effects of auxins on virus-induced leaf abscission. Phytopathology51: 195.

    Google Scholar 

  • Ebel, J. 1986. Phytoalexin synthesis: The biochemical analysis of the induction process. Annu. Rev. Phytopathol.24: 235–264.

    CAS  Google Scholar 

  • Elliston, J., J. Kuc &E. Williams. 1971. Induced resistance to anthracnose at a distance from the site of the inducing interaction. Phytopathology61: 1110–1112.

    Google Scholar 

  • —,——. 1976. Protection of bean against anthracnose byColletotrichum species nonpathogenic on bean. Phytopath. Z.86: 117–126.

    Google Scholar 

  • Esau, K. 1977. Anatomy of seed plants, 2nd ed. John Wiley & Sons, New York.

    Google Scholar 

  • Fraser, R. S. S. 1981. Evidence for the occurrence of the “pathogenesis-related” proteins in leaves of healthy tobacco plants during flowering. Physiol. Pl. Pathol.19: 69–76.

    CAS  Google Scholar 

  • Fujiwara, M., H. Oku &T. Shiraishi. 1987. Involvement of volatile substances in systemic resistance of barley againstErysiphe graminis f. sp.hordei induced by pruning of leaves. Phytopath. Z.120: 81–84.

    Google Scholar 

  • Fulton, R. W. 1951. Superinfection by strains of tobacco mosaic virus. Phytopathology41: 579–592.

    Google Scholar 

  • Furniss, R. L. & V. M. Carolin. 1977. Western forest insects. Miscellaneous publication No. 1339. USDA Forest Service.

  • Garcia-Arenal, F., M. Zaitlin &P. Palukaitis. 1987. Nucleotide sequence analysis of six satellite RNAs of cucumber mosaic virus: Primary sequence and secondary structure alterations do not correlate with differences in pathogenicity. Virology158: 338–347.

    Google Scholar 

  • Gatehouse, A., J. Gatehouse, P. Dobie, A. Kilminster &D. Boulter. 1979. Biochemical basis of insect resistance inVigna unguiculata. J. Sci. Food Agric.30: 948–958.

    CAS  Google Scholar 

  • Gera, A. &G. Loebenstein. 1983. Further studies of an inhibitor of virus replication from tobacco mosaic virus-infected protoplasts of a local lesion-responding tobacco cultivar. Phytopathology73: 111–115.

    Google Scholar 

  • Geske, S. 1987. Characterization of intercellular wash fluid from tobacco mosaic virus infected Pinto Bean primary leaves. M. A. Thesis. University of Montana, Missoula, Montana.

    Google Scholar 

  • Gianinazzi, S. 1984. Genetic and molecular aspects of resistance induced by infections or chemicals. Pages 321–342in T. Kosuge & E. W. Nester (eds.), Plant-microbe interactions. Vol. 1. Molecular and genetic perspectives. Macmillan, New York.

    Google Scholar 

  • —,P. Ahl, A. Cornu &R. Scalla. 1980. First report of host b-protein appearance in response to a fungal infection in tobacco. Physiol. Pl. Path.16: 337–342.

    CAS  Google Scholar 

  • Giebel, J. 1982. Mechanism of resistance to plant nematodes. Ann. Rev. Phytopathol.20: 257–279.

    CAS  Google Scholar 

  • Gilpatrick, J. D. &M. Weintraub. 1952. An unusual type of protection with the carnation mosaic virus. Science115: 701–702.

    PubMed  Google Scholar 

  • Goodman, R. N. 1967. Protection of apple stem tissue againstErwinia amylovora infection by avirulent strains and three other bacterial species. Phytopathology57: 22–24.

    Google Scholar 

  • —. 1980. Defenses triggered by previous invaders: Bacteria. Pages 305–318in J. G. Horsfall & E. B. Cowling (eds.), Plant disease: An advanced treatise. Vol. V. How plants defend themselves. Academic Press, New York.

    Google Scholar 

  • —,Z. Kiraly &K. R. Wood. 1986. The biochemistry and physiology of plant disease. University of Missouri Press, Columbia, Missouri.

    Google Scholar 

  • Green, T. R. &C. A. Ryan. 1972. Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science175: 776–777.

    PubMed  CAS  Google Scholar 

  • Habili, N. &J. M. Kaper. 1981. Cucumber mosaic virus-associated RNA 5. VII. Double stranded form accumulation and disease attenuation in tobacco. Virology112: 250–261.

    Google Scholar 

  • Hadwiger, L. A. &J. M. Beckman. 1980. Chitosan as a component of pea-Fusariumsolani interactions. Pl. Physiol.66: 205–211.

    CAS  Google Scholar 

  • Hahn, M. G., A. Bonhoff &H. Grisebach. 1985. Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected withPhytophthora megasperma f. sp.glycina. Pl. Physiol.77: 591–601.

    CAS  Google Scholar 

  • Hamilton, R. I. 1980. Defenses triggered by previous invaders: Viruses. Pages 279–304in J. G. Horsfall & E. B. Cowling (eds.), Plant disease: An advanced treatise. Vol. V. How plants defend themselves. Academic Press, New York.

    Google Scholar 

  • Hammerschmidt, R. &J. Kuc. 1982. Lignification as a mechanism for induced systemic resistance in cucumber. Physiol. Pl. Pathol.20: 61–72.

    CAS  Google Scholar 

  • Hammond-Kosack, K. E., H. J. Atkinson &D. J. Bowles. 1989. Systemic accumulation of novel proteins in the apoplast of the leaves of potato plants following root invasion by the cyst-nematodeGlobodera rostochiensis. Physiol. Mol. Plant Path.35: 495–506.

    CAS  Google Scholar 

  • Hare, J. D. 1983. Manipulation of host suitability for herbivore pest management. Pages 655–680in R. F. Denno & M. S. McClure (eds.), Variable plants and herbivores in natural and managed systems. Academic Press, New York.

    Google Scholar 

  • Hartley, S. E. &R. D. Firn. 1989. Phenolic biosynthesis, leaf damage and insect herbivory in birch (Betula pendula). J. Chem. Ecol.15: 275–283.

    CAS  Google Scholar 

  • Haukioja, E. &S. Neuvonen. 1987. Insect population dynamics and induction of plant resistance. Chapt. 16, pages 411–432in P. Barbosa & J. C. Schultz (eds.), Insect outbreaks. Academic Press, San Diego.

    Google Scholar 

  • —,J. Suomela &S. Neuvonen. 1985. Long term inducible resistance in birch foliage: Triggering cues and efficacy on a defoliator. Oecologia (Berl.)65: 363–369.

    Google Scholar 

  • Hawksworth,F. G. & R. F. Scharpf (eds.). 1984. Biology of dwarf mistletoes: Proceedings of the symposium. Gen. Tech. Report RM-111. USDA Forest Service.

  • Hecht, E. I. &D. F. Bateman. 1964. Nonspecific acquired resistance to pathogens resulting from localized infections byThielaviopsis basicola or viruses in tobacco leaves. Phytopathology54: 523–530.

    Google Scholar 

  • Hedrick, S. A., J. N. Bell, T. Boller &C. J. Lamb. 1988. Chitinase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. Pl. Physiol.86: 182–186.

    CAS  Google Scholar 

  • Helton, A. W. &J. J. Hubert. 1968. Inducing systemic resistance toCytospora invasion inPrunus domestica with localizedPrunus ringspot virus infections. Phytopathology58: 1423–1424.

    Google Scholar 

  • Hoppe, H. H., B. Humme &R. Heitefuss. 1980. Elicitor induced accumulation of phytoalexins in healthy and rust infected leaves ofPhaseolus vulgaris. Phytopath. Z.97: 85–88.

    CAS  Google Scholar 

  • Huang, J. S. &R. N. Goodman. 1985. Recognition of pathogenic and saprophytic bacteria by tobacco leaf cells, reflected as changes in respiratory rates. Acta Phytopath. Hung.20: 7–15.

    Google Scholar 

  • Jaffee, M. J. 1973. Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation. Planta114: 143–157.

    Google Scholar 

  • —. 1976. Thigmomorphogenesis: A detailed characterization of the response of beans (Phaseolus vulgaris L.) to mechanical stimulation. Z. Pflanzenphysiol.77: 437–453.

    Google Scholar 

  • Karban, R. 1987. Herbivory dependent on plant age: A hypothesis based on acquired resistance. Oikos48: 336–337.

    Google Scholar 

  • Kassanis, B., S. Gianinazzi &R. F. White. 1974. A possible explanation of the resistance of virus-infected tobacco plants to second infection. J. Gen. Virol.23: 11–16.

    Google Scholar 

  • — &R. F. White. 1978. Effect of polyacrylic acid and b-proteins on TMV multiplication in tobacco protoplasts. Phytopath. Z.91: 269–272.

    CAS  Google Scholar 

  • Kauffman, S., M. Legrand, P. Geoffroy &B. Fritig. 1987. Biological function of ‘pathogenesisrelated’ proteins: Four PR proteins of tobacco have 1,3-Beta-glucanase activity. EMBO J. 6: 3209–3212.

    Google Scholar 

  • Kendra, D. F. &L. A. Hadwiger. 1987. Cell death and membrane leakage not associated with the induction of disease resistance in peas by chitosan orFusarium solani f. sp.phaseoli. Phytopathology77: 100–106.

    CAS  Google Scholar 

  • Kinlock, R. A. &M. W. Allen. 1972. Interaction ofMeloidogyne hapla andM. javanica infecting tomato. J. Nematol.4: 7–16.

    Google Scholar 

  • Kiraly, Z. 1980. Defenses triggered by the invader: Hypersensitivity. Pages 201–224in J. G. Horsfall & E. B. Cowling (eds.), Plant disease: An advanced treatise. Vol. V. How plants defend themselves. Academic Press, New York.

    Google Scholar 

  • Kistler, C. &H. D. vanEtten. 1984. Regulation of pisatin demethylation inNectria haematocca and its influence on pisatin tolerance and virulence. J. Gen. Microbiol.130: 2605–2613.

    CAS  Google Scholar 

  • Kombrink, E., M. Schroder &K. Hahlbrock. 1988. Several “pathogenesis-related” proteins in potato are 1,3-Beta-glucanases and chitinases. Proc. Natl. Acad. Sci. USA85: 782–786.

    PubMed  CAS  Google Scholar 

  • Krischik, V. A. &R. F. Denno. 1983. Individual, population and geographic patterns in plant defense. Pages 463–512in R. F. Denno & M. S. McClure (eds.), Variable plants and herbivores in natural and managed systems. Academic Press, New York.

    Google Scholar 

  • Kuc, J. 1982. Induced immunity to plant disease. BioScience32: 854–860.

    Google Scholar 

  • —. 1983. Induced systemic resistance in plants to diseases caused by fungi and bacteria. Pages 191–221in J. A. Bailey & B. J. Deverall (eds.), The dynamics of host defence. Academic Press, Sydney.

    Google Scholar 

  • Laties, G. G., C. Hoelle &B. J. Jacobson. 1972. Alpha-oxidation of endogenous fatty acids in fresh potato slices. Phytochemistry11: 3403–3411.

    CAS  Google Scholar 

  • Lau, J. M., M. McNeil, A. G. Darvill &P. Albersheim. 1985. Structure of the backbone of rhamnogalacturonan I, a pectic polysaccharide in the primary cell walls of plants. Carbohydr. Res.137: 111–125.

    CAS  Google Scholar 

  • Lawton, M. A. &C. J. Lamb. 1987. Transcriptional activation of plant defense genes by fungal elicitor, wounding and infection. Mol. Cell Biol.7: 335–341.

    PubMed  CAS  Google Scholar 

  • Legrand, M., B. Fritig &L. Hirth. 1976. Enzymes of the phenylpropanoid pathway and the necrotic reaction of hypersensitive tobacco to tobacco mosaic virus. Phytochemistry15: 1353–1359.

    CAS  Google Scholar 

  • Leopold, A. C. &P. E. Kriedemann. 1975. Plant growth and development, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  • Levitt, J. 1980. Responses of plants to environmental stress, 2nd ed. Academic Press, New York.

    Google Scholar 

  • Loebenstein, G. 1972. Localization and induced resistance in virus-infected plants. Ann. Rev. Phytopathol.10: 177–206.

    CAS  Google Scholar 

  • —,J. Cohen, S. Shabtai, R. H. A. Courts &K. R. Wood. 1977. Distribution of cucumber mosaic virus in systemically infected tobacco leaves. Virology81: 117–125.

    PubMed  CAS  Google Scholar 

  • — &A. Gera. 1981. Inhibitor of virus replication released from tobacco mosaic virus infected protoplasts of a local lesion-responding tobacco cultivar. Virology114: 132–139.

    CAS  Google Scholar 

  • Logemann, J., J. E. Mayer, J. Schell &L. Willmitzer. 1988. Differential expression of genes in potato tubers after wounding. Proc. Natl. Acad. Sci. USA85: 1136–1140.

    PubMed  CAS  Google Scholar 

  • Lyr, H. &L. Banasiak. 1983. Alkenales, volatile defence substances in plants as models for new plant protective agents. Acta Phytopath. Hung.18: 3–12.

    CAS  Google Scholar 

  • MacNicol, P. K. 1976. Rapid metabolic changes in the wounding response of leaf discs following excision. Plant Physiol.57: 80–84.

    PubMed  Google Scholar 

  • Marchand, P. J. 1987. Life in the cold. University Press of New England, Hanover, New Hampshire.

    Google Scholar 

  • Matta, A. 1980. Defenses triggered by previous diverse invaders. Pages 345–362in J. G. Horsfall & E. B. Cowling (eds.), Plant disease: An advanced treatise. Vol. V. How plants defend themselves. Academic Press, New York.

    Google Scholar 

  • Matthews, R. E. F. 1981. Plant virology, 2nd ed. Academic Press, New York.

    Google Scholar 

  • McCully, M. E. 1983. Structural aspects of graft formation. Pages 71–88in R. Moore (ed.), Vegetative compatibility responses in plants. Baylor University Press, Waco, Texas.

    Google Scholar 

  • McIntyre, J. L. 1980. Defenses triggered by previous invaders: Nematodes and insects. Pages 333–344in J. G. Horsfall & E. B. Cowling (eds.), Plant disease: An advanced treatise, Vol. V. How plants defend themselves. Academic Press, New York.

    Google Scholar 

  • —,J. A. Dodds &J. D. Hare. 1981. Effects of localized infections ofNicotiana tabacum by tobacco mosaic virus on systemic resistance against diverse pathogens and an insect. Phytopathology71: 297–301.

    Google Scholar 

  • —,J. Kuc &E. B. Williams. 1975. Protection of Bartlett pear against fireblight with deoxyribonucleic acid from virulent and avirulentErwinia amylovora. Physiol. Pl. Pathol.7: 153–170.

    CAS  Google Scholar 

  • — &P. M. Miller. 1978. Protection of tobacco againstPhytophthora parasitica var.nicotianae by cultivar-nonpathogenic races, cell-free sonicates andPratylenchus penetrans. Phytopathology68: 235–239.

    Google Scholar 

  • Mehdy, M. C. &C. J. Lamb. 1987. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J.6: 1527–1533.

    PubMed  CAS  Google Scholar 

  • Mitchell, C. A., C. J. Severson, J. A. Wott &P. A. Hammer. 1975. Seismomorphogenic regulation of plant growth. J. Amer. Soc. Hort. Sci.100: 161–165.

    Google Scholar 

  • Mitra, A. 1985. Role of antiviral substances in induced resistance in tobacco mesophyll protoplasts. Ph.D. Thesis. University of Montana, Missoula, Montana.

    Google Scholar 

  • Moore, R. 1983. Physiological aspects of graft formation. Pages 89–106in R. Moore (ed.), Vegetative compatibility responses in plants. Baylor University Press, Waco, Texas.

    Google Scholar 

  • Neel, P. L. &R. W. Harris. 1971. Motion-induced inhibition of elongation and induction of dormancy inLiquidambar. Science173: 58–59.

    PubMed  Google Scholar 

  • Neuvonen, S. &K. Danell. 1987. Does browsing modify the quality of birch foliage forEpirrita autumnata larvae? Oikos49: 156–160.

    Google Scholar 

  • Nichols, E. J., J. M. Beckman &L. A. Hadwiger. 1980. Glycosidic enzyme activity in pea tissue and pea-Fusariumsolani interactions. Pl. Physiol.66: 215–216.

    Google Scholar 

  • O’Brien, P. C. &J. M. Fisher. 1977. Development ofHeterodera avenae on resistant wheat and barley cultivars. Nematologica23: 390–397.

    Google Scholar 

  • Oksanen, L., T. Oksanen, A. Lukkari &S. Siren. 1987. The role of phenol-based inducible defense in the interaction between tundra populations of the voleClethrionomys rufocanus and the dwarf shrubVaccinium myrtillus. Oikos50: 371–380.

    Google Scholar 

  • Otsuki, Y., T. Shimomura &I. Takebe. 1972. Tobacco mosaic virus multiplication and expression of the N-gene in necrotic responding tobacco varieties. Virology50: 45–50.

    PubMed  CAS  Google Scholar 

  • Ouchi, S. 1983. Induction of resistance or susceptibility. Ann. Rev. Phytopathol.21: 289–315.

    Google Scholar 

  • Palukaitis, P. &M. Zaitlin. 1984. Satellite RNAs of cucumber mosaic virus: Characterization of two new satellites. Virology132: 426–435.

    CAS  Google Scholar 

  • Parsons, T. J., H. D. Bradshaw, Jr. &M. P. Gordon. 1989. Systemic accumulation of specific mRNAs in response to wounding in poplar trees. Proc. Natl. Acad. Sci. USA86: 7895–7899.

    PubMed  CAS  Google Scholar 

  • Pickard, B. G. 1973. Action potentials in higher plants. Bot. Rev.39: 172–201.

    Google Scholar 

  • Rast, A. T. B. 1972. MII-16, an artificial symptomless mutant of tobacco mosaic virus for seedling inoculation of tomato crops. Neth. J. Pl. Pathol.78: 110–112.

    Google Scholar 

  • Rathmell, W. G. &L. Sequeira. 1974. Soluble peroxidase in fluid from the intercellular spaces of tobacco leaves. Pl. Physiol.53: 317–318.

    CAS  Google Scholar 

  • Rhoades, D. F. 1979. Evolution of plant chemical defense against herbivores. Pages 3–53in G. A. Rosenthal & D. H. Janzen (eds.), Herbivores: Their interaction with secondary plant metabolites. Academic Press, New York.

    Google Scholar 

  • —. 1983. Herbivore population dynamics and plant chemistry. Pages 155–220in R. F. Denno & M. S. McClure (eds.), Variable plants and herbivores in natural and managed systems. Academic Press, New York.

    Google Scholar 

  • Roberts, D. A. 1982. Systemic acquired resistance induced in hypersensitive plants by nonnecrotic localized viral infections. Virology122: 207–209.

    Google Scholar 

  • —. 1984. Comparison of lesion size and number as criteria of virus-induced systemic acquired resistance in hypersensitive plants. Phytopath. Z.110: 272–276.

    Google Scholar 

  • Roblin, G. 1985. Analysis of the variation potential induced by wounding in plants. Pl. Cell Physiol.26:455–461.

    Google Scholar 

  • — &J. Bonnemain. 1985. Propagation inVicia faba stem of a potential variation induced by wounding. Pl. Cell Physiol.26: 1273–1283.

    Google Scholar 

  • Roby, D., A. Toppan &M. Esquerre-Tugaye. 1988. Systemic induction of chitinase activity and resistance in melon plants upon fungal infection or elicitor treatment. Physiol. Mol. Plant Path.33:409–417.

    CAS  Google Scholar 

  • Ross, A. F. 1961a. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology14: 329–339.

    PubMed  CAS  Google Scholar 

  • —. 1961b. Systemic acquired resistance induced by localized virus infections in plants. Virology14: 340–358.

    PubMed  CAS  Google Scholar 

  • —. 1966. Systemic effects of local lesion formation. Pages 127–150in A. B. R. Beemster & J. Dijkstra (eds.), Viruses of plants. North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Ryan, C. A. 1981. Proteinase inhibitors. Pages 351–370in P. K. Stumpf & E. E. Conn (editors in chief), The biochemistry of plants: A comprehensive treatise. Vol. 6. A. Marcus (ed.), Proteins and nucleic acids. Academic Press, New York.

    Google Scholar 

  • —. 1983. Insect-induced chemical signals regulating natural plant protection responses. Pages 43–90in R. F. Denno & M. S. McClure (eds.), Variable plants and herbivores in natural and managed systems. Academic Press, New York.

    Google Scholar 

  • —. 1984. Systemic responses to wounding. Pages 307–320in T. Kosuge & E. W. Nester (eds.), Plant-microbe interactions. Vol. 1. Molecular and genetic perspectives. Macmillan, New York.

    Google Scholar 

  • —. 1987. Oligosaccharide signalling in plants. Ann. Rev. Cell Biol.3: 295–317.

    PubMed  CAS  Google Scholar 

  • —,P. D. Bishop, G. Pearce, A. G. Darvill, M. McNeil &P. Albersheim. 1981. A sycamore cell wall polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities. Pl. Physiol.68: 616–618.

    CAS  Google Scholar 

  • Sanchez-Serrano, J. J., M. Keil, A. O’Connor, J. Schell &L. Willmitzer. 1987. Wound induced expression of a potato proteinase inhibitor II gene in transgenic tobacco plants. EMBO J.6: 303–306.

    PubMed  CAS  Google Scholar 

  • Schildknecht, H. 1984. Turgorins—New chemical messengers for plant behaviour. Endeavour8: 113–117.

    CAS  Google Scholar 

  • —. 1983. Turgorins, hormones of the endogenous daily rhythms of higher organized plants—Detection, isolation, structure, synthesis and activity. Angew. Chem. Int. Ed. Engl. 22: 695–710.

    Google Scholar 

  • Schultz, J. C. &I. T. Baldwin. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science217: 149–151.

    PubMed  Google Scholar 

  • Sela, I. 1980. Plant-virus interactions related to resistance and localization of viral infections. Adv. Virus Res.26: 201–237.

    Google Scholar 

  • —. 1981. Interferon-like substance from virus-infected plants. Perspectives in VirologyXI: 129–139.

    Google Scholar 

  • Sequeira, L. 1983. Mechanisms of induced resistance in plants. Ann. Rev. Microbiol.37: 51–79.

    CAS  Google Scholar 

  • —,G. Gaard &G. A. De Zoeten. 1977. Interaction of bacteria and host cell walls: Its relation to mechanisms of induced resistance. Physiol. Pl. Pathol.10: 43–50.

    Google Scholar 

  • — &T. A. Steeves 1954. Auxin inactivation and its relation to leaf drop caused by the fungusOmphalia flavida. Pl. Physiol.29: 11–16.

    CAS  Google Scholar 

  • Shigo, A. L. 1984. Compartmentalization: A conceptual framework for understanding how trees grow and defend themselves. Ann. Rev. Phytopathol.22: 189–214.

    Google Scholar 

  • Sibaoka, T. 1962. Excitable cells inMimosa. Science137: 226.

    PubMed  CAS  Google Scholar 

  • —. 1969. Physiology of rapid movements in higher plants. Ann. Rev. Pl. Physiol.20: 165–184.

    CAS  Google Scholar 

  • Steponkus, P. L. &F. O. Lanphear. 1967. Light stimulation of cold acclimation: Production of a translocatable promoter. Pl. Physiol.42:1673–1679.

    CAS  Google Scholar 

  • Stoessl, A. 1983. Secondary plant metabolites in preinfectional and postinfectional resistance. Pages 71–122 m J. A. Bailey & B. J. Deverall (eds.), The dynamics of host defence. Academic Press, Sydney.

    Google Scholar 

  • Tegtmeier, K. J. &H. D. vanEtten. 1982. The role of pisatin tolerance and degradation in the virulence ofNectria haematococca on peas: A genetic analysis. Phytopathology72: 608–612.

    CAS  Google Scholar 

  • Thielges, B. A. 1968. Altered polyphenol metabolism in the foliage ofPinus sylvestris associated with European pine sawfly attack. Canad. J. Bot.46: 724–725.

    CAS  Google Scholar 

  • Tien, P., X. Zhang, B. Qiu, B. Qin &G. Wu. 1987. Satellite RNA for the control of plant diseases caused by cucumber mosaic virus. Ann. Appl. Biol.111: 143–152.

    Google Scholar 

  • Ting, I. P. 1982. Plant physiology. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Turgeon, R. &J. A. Webb. 1971. Growth inhibition by mechanical stress. Science174: 961962.

    Google Scholar 

  • van der Plank, J. E. 1975. Principles of plant infection. Academic Press, New York.

    Google Scholar 

  • van Loon, L. C. 1983. Mechanisms of resistance in virus-infected plants. Pages 123–190in J. A. Bailey & B. J. Deverall (eds.), The dynamics of host defence. Academic Press, Sydney.

    Google Scholar 

  • van Sambeek, J. W. &B. G. Pickard. 1976a. Mediation of rapid electrical, metabolic, transpirational and photosynthetic changes by factors released from wounds. I. Variation potentials and putative action potentials in intact plants. Canad. J. Bot.54: 2642–2650.

    Google Scholar 

  • —. 1976b. Mediation of rapid electrical, metabolic, transpirational and photosynthetic changes by factors released from wounds. III. Measurements of carbon dioxide and water flux. Canad. J. Bot.54: 2662–2671.

    Google Scholar 

  • —,with participation by C. E. Ulbright. 1976. Mediation of rapid electrical, metabolic, transpirational and photosynthetic changes by factors released from wounds. II. Mediation of the variation potential by Ricca’s factor. Canad. J. Bot.54: 2651–2661.

    Google Scholar 

  • Verma, H. N., L. P. Awasthi &K. C. Saxena. 1979. Isolation of the virus inhibitor from the root extract ofBoerhaavia diffusa inducing systemic resistance in plants. Canad. J. Bot.57: 1214–1217.

    CAS  Google Scholar 

  • Walker-Simmons, M. &C. A. Ryan. 1977. Immunological identification of proteinase inhibitors I and II in isolated tomato leaf vacuoles. Pl. Physiol.60: 61–63.

    CAS  Google Scholar 

  • Werner, R. A. 1979. Influence of host foliage on development, survival, fecundity and oviposition of the spear-marked black mothRheumaptera hastata (Lepidoptera: Geometridae) Canad. Entomol.111: 317–332.

    Google Scholar 

  • Whitham, T. G. 1987. Evolution of territoriality by herbivores in response to host plant defenses. Amer. Zoologist27: 359–369.

    Google Scholar 

  • Wieringa-Brants, D. H. 1983. A model to simulate systemic acquired resistance induced by localized virus infections in hypersensitive tobacco. Phytopath. Z.106: 369–372.

    Google Scholar 

  • Yamazaki, N., S. C. Fry, D. G. Darvill &P. Albersbeim. 1983. Host-pathogen interactions. XXIV. Fragments isolated from suspension-cultured sycamore cell walls inhibit the ability of cells to incorporate [14-C] leucine into proteins. Pl. Physiol.72: 864–869.

    CAS  Google Scholar 

  • Zimmerman, M. H. &C. L. Brown. 1971. Trees: Structure and function. Springer-Verlag, New York.

    Google Scholar 

  • — &H. Ziegler. 1975. Appendix III: List of sugars and sugar alcohols in sieve tube exudates.In A. Pirson & M. H. Zimmerman (eds.), Encyclopedia of plant physiolgy. Vol. 1. M. H. Zimmerman & J. A. Milburn (eds.) Transport in plants. I. Phloem transport. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chessin, M., Zipf, A.E. Alarm systems in higher plants. Bot. Rev 56, 193–235 (1990). https://doi.org/10.1007/BF02858325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858325

Keywords

Navigation