Skip to main content
Log in

Current studies of the pteridophyte life cycle

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The factors controlling the gametophyte/sporophyte/gametophyte cycle in the Pteridophyta are re-examined in the light of current knowledge of gametogenesis, sporogenesis, apospory and apogamy.

The ultrastructural and cytochemical features of gametogenesis point to oogenesis as being particularly significant in relation to change of reproductive phase from gametophyte to sporophyte. The egg cell is richly endowed with cytoplasm, and it matures in a closed chamber (the archegonium), in which there is opportunity to take in nutrients released by the lysis of the other cells in the archegonial canal. The cytoplasm of the mature gamete is well provided with organelles and ribosomes, and contains substantial quantities of RNA and DNA. The latter is principally in the organelles, but a small amount may be free in the cytoplasm, accompanied by histones. The chromatin is finely dispersed, giving no detectable Feulgen reaction, and chromosomes cannot be recognized. It is suggested that the unique enrichment of the cytoplasm of the egg cell causes reactivation of the genes responsible for sporophytic growth; the consequent messenger RNA’s are already beginning to appear before fertilization. Support for this hypothesis comes from experiments in which egg cells are allowed to mature in the presence of uridine analogues.

The mature spermatozoid by contrast is little more than a nucleus provided with a motor apparatus. The chromatin is highly condensed, and it seems likely that transcription is dormant. Other than contributing a complement of Mendelian genes to the zygote, the main function of karyogamy may be to bring about the reorganization of the female nucleus. Decondensation of the male chromatin is accompanied by recondensation of the female, the opposed processes co-terminating in prophase of the first division.

With regard to the change from sporophyte to gametophyte, particular significance is seen in the thickened wall which surrounds the spore mother cell. Labelling experiments indicate that this is an effective barrier to complex molecules. Sporogenesis is envisaged as taking place in a confined and nutritionally deprived environment. The cytoplasm is further impoverished by the demands of the meiotic nucleus and is ultimately, with little opportunity for replenishment, shared between the four spores of the tetrad. Although haploid like that of the egg cell, the genome of the spore is supported by a depleted cytoplasm, unlike that of the egg cell. In these circumstances the activation of the sporophytic genes cannot be sustained, and the gametophytic are consequently expressed.

This interpretation of the significance of sporogenesis in the cycle receives support from the experimental investigation of apospory. Isolation from the correlative influences of the parent, together with subjecting the cells concerned to metabolic stress, restore the ability of the cell to divide but restrict the ensuing growth to gametophytic morphology.

Heterosporous cycles in the Pteridophyta can be reconciled with these views. In megasporogenesis the effects of meiosis are reversed by the particularly rich environment in which the surviving megaspore matures. The strong sporophytic tendencies of the egg cells subsequently produced are indicated by the numerous records of parthenogenesis, a phenomenon of which there are no well-established instances in the homosporous Pteridophyta. The obligately apogamous ferns, with their larger spores and rapidly maturing gametophytes, occupy an intermediate position.

Резюме

Факторы регулирующи е цикл развития папор отниковых (Pterido phyta): гаметофит/спорофит /гаметофит были занов о изучены учиты вая современные знан ия гаметогенеза, спор огенеза, апоспории и апо гамии.

Ультраструктурные и цитохимические особ енности гаметогенеза указывают на то, что оо генез является особе нно важным в связи с переходом репродукц ионной фазы от гамето фита в спорофит. Яйце клетка богата снабже на цитоплазмой и она с озревает в закрытой ка мере (в архегонии или я йцевой мешочке), где им еется возможность усваивать вещества, о бразующихся в резуль тате процесса лизиса дру гих клеток в яйцеводе. Цитоплазма зрелой га меты богато снабжена органеллами и рибосо мами и содержит основ ные количества РНК и ДНК. ДНК в основном нах одится в органеллах н о небольшое коли чество может присутс твовать в свободной ф орме в цитоплазме связано с гистонами. Хроматин овые зёрна очень мель кие, не дают ощутимую реакцию Фелгена, хром осомы не обнаружимы. Предпологается что свойственное обогощ ение цитоплазмы яйце клетки вызывает реакти вацию генов, ответств енных за спорофитиче ский рост, а последующие мРНК-ы уже начинают по являться перед оплод отворением. Утверж дением этого гипотез а могут служить резул ьтаты таких опытов, где яйцеклетки созреваю т в присутствии анало гов уридина.

Зрелый сперматозоид только на немного бол ьше одного ядра снаб женного моторным апп аратом. Хроматин высо ко конденсирован и транскрипция кажетс я находиться в стадии покоя. Главная функция кариогамии может при вести к реорганизаци и женского ядра и облег чить деление больше ч ем осуществлять менд елевского расщепления генов в зиготе. Деконд енсация мужского хро матина связана с рекон денсацией женского и эти противоположные процессы содействуют в профазе первого деле ния.

В связи с переходом от стадии спорофита в га метофит особое зна чение имеет утольщен ная клеточная стена о коло материнской клетки споры. Опыты с мечение м указывают на то, что о на (кл. стена) и является мощной гран ицей для комплексных молекул. Спорогенез оче видно происходит в ог раниченных и бедно сн абженных условиях. Цитоплазма ещё дальш е беднеет в связи с пот ребностями мейотичес кого ядра и наконец бе з возможности обновл ения распределяется меж ду 4 спорами тетрады. Ге ном споры как и яйцекл етки является гап лоидным но различает ся наличием обедненн ой цитоплазмы. В этих условиях активация с порофитических гено в не может произойти и в следствии этого проя вляются гаметофиты.

Такая интерпретация важности спорогенез а в цикле развития под держивается экспери ментальными исследо ваниями апоспории. Изо лирование влияния ро дителя вместе с подве рженном клеток метабо лическому стрессу во сстанавляет способн ость клетки к делению но ограничивает послед ующий рост гаметофит ической морфологии.

Гетероспоровые цикл ы папоротниковых (Pteridophyta) м огут быть пересмотрены учитыв ая этих взглядов. В мегаспорогенезе эфф екты мейоза превращены не обычайно богатыми ус ловиями, в которых пере живающая мегаспора с озревает. Сильные спорофитические тен денции образующихся яйцекл еток поддержаются многочисленными слу чаями партеногенеза. Этот ф еномен неособенно ха рактерен для гомоспоро вых папоротниковых. О бъязательно апогамо вые папоротники со своими гораздо больш ими спорами и быстро созревающими гамето фитами занимают пром ежуточное положение.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aldrich, H. &J. K. Vasil. 1970. Ultrastructure of the post-meiotic nuclear envelope in microspores ofPodocarpus macrophylla. J. Ultrastruct. Res.32: 307–315.

    PubMed  CAS  Google Scholar 

  • Anderson-Kötto, J. 1932. Observations on the inheritance of apospory and alternation of generations. Svensk Bot. Tidskr.26: 99–106.

    Google Scholar 

  • Attree, S. M. &E. Sheffield. 1985. Isolation and regeneration ofPteridium protoplasts. Proc. Roy. Soc. Edinburgh86: 459–460.

    Google Scholar 

  • Bednara, J., I. Gielwanowska &B. Rodkiewicz. 1986. Regular arrangements of mitochondria and plastids during sporogenesis inEquisetum. Protoplasma130: 145–152.

    Google Scholar 

  • Bell, P. R. 1960. Interaction of nucleus and cytoplasm during oogenesis inPteridium aquilinum (L.) Kuhn. Proc. Roy. Soc. London153B: 421–432.

    Google Scholar 

  • —. 1963. The cytochemical and ultrastructural peculiarities of the fern egg. J. Linn. Soc, Bot.58: 353–359.

    CAS  Google Scholar 

  • —. 1969. The cytoplasmic vesicles of the female reproductive cells ofPteridium aquilinum. Z. Zellforsch.96: 49–62.

    PubMed  CAS  Google Scholar 

  • —. 1970. The archegoniate revolution. Sci. Prog. (Oxford)58: 27–45.

    CAS  Google Scholar 

  • —. 1972. Nucleocytoplasmic interaction in the eggs ofPteridium aquilinum maturing in the presence of thiouracil. J. Cell Sci.11: 739–755.

    PubMed  CAS  Google Scholar 

  • —. 1974a. Nuclear sheets in the egg of a fern,Dryopteris filix-mas. J. Cell Sci.14: 69–83.

    PubMed  CAS  Google Scholar 

  • —. 1974b. The origin of the multilayered structure in the spermatozoid ofPteridium aquilinum. Cytobiologie8: 203–212.

    Google Scholar 

  • —. 1975. Observations on the male nucleus during fertilization in the fernPteridium aquilinum. J. Cell Sci.17: 141–153.

    PubMed  CAS  Google Scholar 

  • —. 1978. A microtubule-nuclear envelope complex in the spermatozoid ofPteridium. J. Cell Sci.29: 189–195.

    PubMed  CAS  Google Scholar 

  • —. 1979a. Gametogenesis and fertilization in ferns. Pages 471–503in A. F. Dyer (ed.), The experimental biology of ferns. Academic Press, London.

    Google Scholar 

  • —. 1979b. The contribution of the ferns to an understanding of the life cycles of vascular plants. Pages 67–86in A. F. Dyer (ed.), The experimental biology of ferns. Academic Press, London.

    Google Scholar 

  • —. 1980. Nucleocytoplasmic interaction during maturation of the egg of the fernHistiopteris incisa (Thunb). J. Smith. Ann. Bot. (London)45: 475–481.

    Google Scholar 

  • —. 1981. Megasporogenesis in a heterosporous fern: Features of the organelles in meiotic cells and young megaspores. J. Cell Sci.51: 109–119.

    PubMed  CAS  Google Scholar 

  • —. 1983a. Nuclear bodies in the maturing egg cell of a fern,Pteridium aquilinum. J. Cell Sci.60: 109–116.

    PubMed  CAS  Google Scholar 

  • —. 1983b. Plastid envelopes in reproductive cells. Eur. J. Cell Biol.30: 279–282.

    PubMed  CAS  Google Scholar 

  • -. 1983c. Cytoplasmic enrichment, a causal factor in the life cycle of ovulated plants. Pages 17–19in O. Erdelska (ed.), Fertilization and embryogenesis in ovulated plants. Proc. VII Int. Cytoembryol. Symp. Bratislava.

  • —. 1984. The ultrastructure of fern egg cells in relation to taxonomy. Amer. J. Bot.71: 141 (Abstracts).

    Google Scholar 

  • —. 1985. Maturation of the megaspore inMarsilea vestita. Proc. Roy. Soc. London B,223: 485–494.

    Google Scholar 

  • —. 1986. Features of egg cells of living representatives of ancient families of ferns. Ann. Bot. (London)57: 613–621.

    Google Scholar 

  • —. 1976. Gametogenesis and fertilization inPteridium. J. Linn. Soc. (Bot.)73: 47–78.

    Google Scholar 

  • —. 1987. The origin and composition of nucleolus-like inclusions in the cytoplasm of fern egg cells. J. Cell Sci.87: 283–290.

    Google Scholar 

  • Bienfait, A. &L. Waterkeyn. 1976. Sur la nature des parois sporocytaires chez les mousses et chez quelques ptéridophytes. Étude comparative. Compt. rend. Acad. Sci. Paris Sér. D,282:2079–2081.

    Google Scholar 

  • Bordonneau, M., P. Fleurat-Lessart, &Y. Tourte. 1984. Le fécondation chez une Pté ridophyte, leMarsilea vestita. Bull. Soc. Bot. France131: 163–170.

    Google Scholar 

  • Brown, R. C. &B. E. Lemmon. 1982. Ultrastructural aspects of moss meiosis: Review of nuclear and cytoplasmic events during prophase. J. Hattori Bot. Lab.53: 29–39.

    Google Scholar 

  • — & —. 1985. A cytoskeletal system predicts division plane in meiosis ofSelaginella. Protoplasma127: 101–109.

    Google Scholar 

  • Carothers, Z. B., R. R. Robbins &D. L. Haas. 1975. Some ultrastructural aspects of spermatogenesis inLycopodium complanatum. Protoplasma86: 339–350.

    Google Scholar 

  • Cave, C. F. &P. R. Bell. 1974a. The synthesis of ribonucleic acid and protein during oogenesis inPteridium aquilinum. Cytobiologie9: 331–343.

    CAS  Google Scholar 

  • — & —. 1974b. The nature of the membrane around the egg ofPteridium aquilinum (L.) Kuhn. Ann. Bot. (London)38: 17–21.

    Google Scholar 

  • — & —. 1975. Evidence for the association of acyl transferases with the production of nuclear evaginations in maturing eggs of the fernDryopteris filix-mas. Histochemistry44: 57–65.

    PubMed  CAS  Google Scholar 

  • — & —. 1979. The effect of colchicine on spermiogenesis in a fern,Pteridium aquilinum (L.) Kuhn. Ann. Bot. (London)44: 407–415.

    CAS  Google Scholar 

  • Cooper-Driver, G. 1976. Chemotaxonomy and phytochemical ecology of bracken. J. Linn. Soc. (Bot.)74: 35–46.

    Google Scholar 

  • Dickinson, H. G. &P. R. Bell. 1972. Structures resembling nuclear pores at the orifice of nuclear invaginations in developing microspores ofPinus banksiana. Dev. Biol.27: 425–429.

    PubMed  CAS  Google Scholar 

  • —. 1977. Ribosomes, membranes and organelles during meiosis in angiosperms. Phil. Trans. Roy. Soc. London B,277: 327–342.

    PubMed  CAS  Google Scholar 

  • —. 1975. Post-meiotic nucleo-cytoplasmic interaction inPinus banksiana. Planta122: 99–104.

    CAS  Google Scholar 

  • Doonan, J. H., C. W. Lloyd &J. G. Duckett. 1986. Anti-tubulin antibodies locate the blepharoplast during spermatogenesis in the fernPlatyzoma microphyllum. R. Br. J. Cell Sci.81: 243–266.

    CAS  Google Scholar 

  • Duckett, J. G. &P. R. Bell. 1977. An ultrastructural study of the mature spermatozoid ofEquisetum. Phil. Trans. Roy. Soc. London B,277: 131–158.

    Google Scholar 

  • —. 1984. The origins of heterospory: A comparative study of sexual behaviour in the fernPlatyzoma microphyllum R. Br. and the horsetailEquisetum giganteum L. J. Linn. Soc. Bot.88: 11–34.

    Google Scholar 

  • Elmore, H. W. &D. P. Whittier. 1975. The involvement of ethylene and sucrose in the inductive and developmental phases of apogamous bud formation inPteridium gametophytes. Canad. J. Bot.53: 375–381.

    CAS  Google Scholar 

  • Esser, K., U. Kück, C. Lang-Hinrichs, P. Lemke, H. D. Osiewacz, U. Stahl &P. Tudzynski. 1986. Plasmids of eukaryotes. Springer, Berlin.

    Google Scholar 

  • Faivre, M., J. Kuligowski-Andres, &Y. Tourte. 1982. Étude expérimentale de la fécondation chez une ptéridophyte: Événements nucleaires et cytoplasmiques. Cytobios35: 195–208.

    Google Scholar 

  • Farlow, W. G. 1874. An asexual growth from the prothallium ofPteris cretica. Quart. J. Microscop. Sci.14: 266–272.

    Google Scholar 

  • —. 1899. Apospory inPteris aquilina. Ann. Bot. (old series)2: 383–386.

    Google Scholar 

  • Fowke, L. C. &J. D. Pickett-Heaps. 1969. Cell division inSpirogyra. II. Cytokinesis. J. Phycol.5:273–281.

    Google Scholar 

  • Freeberg, J. A. 1957. The apogamous development of sporelings ofLycopodium cernuum L.,L. complanatum var.flabelliforme Fernald andL. selago L.in vitro. Phytomorphology7: 217–229.

    Google Scholar 

  • Gabarajeva, N. I. 1984a. The development of spores inPsilotum nudum (Psilotaceae): The changes of cytoplasm and organelles of spore mother cells in the premeiotic interphase—to leptotene prophase of the first meiosis. Bot. Zhurn.69: 1441–1450.

    Google Scholar 

  • —. 1984b. The development of spores inPsilotum nudum (Psilotaceae): The changes in cytoplasm and organelles of spore mother cells from zygotene to pachytene. Bot. Zhurn.69: 1612–1622.

    Google Scholar 

  • —. 1985. The development of spores inPsilotum nudum (Psilotaceae): Changes in cytoplasm and organelles of spore mother cells in metaphase and telophase I of meiosis. Bot. Zhurn.70:441–450.

    Google Scholar 

  • Gastony, G. J. 1986. Electrophoretic evidence for the origin of fern species by unreduced spores. Amer. J. Bot.73: 1563–1569.

    CAS  Google Scholar 

  • —. 1976. Chromosome numbers and apomixis in the fern genusBommeria. Biotropica8: 1–11.

    Google Scholar 

  • Gorska-Brylass, A. 1968. Occurrence of callose in gametogenesis in Pteridophyta. Bull. Acad. Polon. Sci. Sér. Biol.16: 757–759.

    Google Scholar 

  • Goswami, H. K. 1975a. The morphogenesis of mixed sporangia inIsoetes. J. Indian Bot. Soc.54: 210–218.

    Google Scholar 

  • —. 1975b. Chromosome studies in natural populations ofIsoetes pantii with heterosporous sporangia. Cytologia40: 543–551.

    Google Scholar 

  • Haufler, C. H. 1987. Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. Amer. J. Bot.74: 953–966.

    Google Scholar 

  • Hepler, P. K. 1976. The blepharoplast ofMarsilea: Itsde novo formation and spindle association. J. Cell Sci.21: 361–390.

    PubMed  CAS  Google Scholar 

  • Herd, Y. R., E. G. Cutter &I. Watanabe. 1985. A light and electron microscopic study of microsporogenesis inAzolla microphylla. Proc. Roy. Soc. Edinburgh86: 53–58.

    Google Scholar 

  • —, — & —. 1986. An ultrastructural study of post-meiotic development in the megasporocarp ofAzolla microphylla. Canad. J. Bot.64: 822–833.

    Google Scholar 

  • Heslop Harrison, J. &A. Mackenzie. 1967. Autoradiography of soluble [2-14C] thymidine derivatives during meiosis and microsporogenesis inLilium anthers. J. Cell Sci.2: 387–400.

    PubMed  CAS  Google Scholar 

  • Hickok, L. G. 1979. Apogamy and somatic restitution in the fernCeratopteris. Amer. J. Bot.66: 1074–1078.

    Google Scholar 

  • Hirsch, A. M. 1975. The effect of sucrose on the differentiation of excised leaf tissue into either gametophytes or sporophytes. Pl. Physiol.56: 390–393.

    CAS  Google Scholar 

  • Horner, H. T., Jr. &C. K. Beltz. 1970. Cellular differentiation of heterospory inSelaginella. Protoplasma71: 335–341.

    Google Scholar 

  • Hurel-Py, G. 1950. Recherches préliminaires sur la culture aseptique des prothalles de Filicinées. Rev. Gén. Bot.57: 637–735.

    Google Scholar 

  • Hyams, J. S., K. P. Vondy, A. Luba &P. R. Bell. 1983. Structural and macromolecular events associated with basal body morphogenesis inMarsilea. J. Submicroscop. Cytol.15: 133–138.

    CAS  Google Scholar 

  • Jayasekera, R. D. E. &P. R. Bell. 1972. The effect of thiouracil on the viability of eggs and embryogeny inPteridium aquilinum. Planta102: 206–214.

    CAS  Google Scholar 

  • Jensen, W. A. 1968. Cotton embryogenesis: The zygote. Planta79: 346–366.

    Google Scholar 

  • Kermarrec, O. &Y. Tourte. 1985. Chloral hydrate effects on oogenesis inMarsilea vestita Hook. et Grev. Gamete Res.11: 399–409.

    CAS  Google Scholar 

  • Klekowski, E. J., Jr. 1979. The genetics and reproductive biology of ferns. Pages 133–170in A. F. Dyer (ed.), The experimental biology of ferns. Academic Press, London.

    Google Scholar 

  • Kotenko, J. L. 1985. Antheridial formation inOnoclea sensibilis L.: Genesis of the jacket wall cells. Amer. J. Bot.72: 596–605.

    Google Scholar 

  • Kuligowski-Andres, J., M. Faivre &Y. Tourte. 1982. Étude de la structure et du compartement du noyau spermatique lors de la fécondation chez une fougère, leMarsilea vestita; effet de la colchicine. Compt. rend. Acad. Sci. Paris Sér. D,295: 335–340.

    CAS  Google Scholar 

  • —. 1985. Fertilization of a colchicine-treated gamete of the fernMarsilea vestita. Exp. Bot.43: 263–276.

    Google Scholar 

  • Laird, S. 1986. Apogamy in the fernPteris cretica. M.Sc. Dissertation. University of Manchester.

  • —. 1986. Antheridia and archegonia of the apogamous fernPteris cretica. Ann. Bot.57: 139–143.

    Google Scholar 

  • Lang, W. H. 1898. On apogamy and the development of sporangia upon fern prothalli. Phil. Trans. Roy. Soc. London110: 187–236.

    Google Scholar 

  • Lehmann, H., H. V. Neidhart &G. Schlenkermann. 1984. Ultrastructural investigations on sporogenesis inEquisetum fluviatile. Protoplasma123: 38–47.

    Google Scholar 

  • Löve, A. &E. Kjellqvist. 1972. Cytotaxonomy of Spanish plants. I. Pteridophyta and Gymnospermae. Lagascalia2: 23–25.

    Google Scholar 

  • Lovis, J. D. 1977. Evolutionary patterns and processes in ferns. Advances Bot. Res.4: 230–415.

    Google Scholar 

  • Mabrouk, H. H. 1978. The sperm ofEquisetum arvense L. I. Ultrastructural and cytochemical studies of nuclear constituents of ripe sperm. Histochemistry55: 325–339.

    PubMed  CAS  Google Scholar 

  • —. 1979. Les protéines basiques du noyau du spermatozoïde de l’Equisetumarvense L. Compt. rend. Acad. Sci. Paris Sér. D,289: 969–972.

    CAS  Google Scholar 

  • Mackenzie, A., J. Heslop Harrison &H. G. Dickinson. 1967. Elimination of ribosomes during meiotic prophase. Nature215: 997–999.

    PubMed  CAS  Google Scholar 

  • Mahlberg, P. C. &M. Baldwin. 1975. Experimental studies on megaspore viability, parthenogenesis and sporophyte formation inMarsilea, Pilularia andRegnellidium. Bot. Gaz.136: 269–273.

    Google Scholar 

  • Manton, I. 1950. Problems of cytology and evolution in the Pteridophyta. University Press, Cambridge.

    Google Scholar 

  • —. 1954. Induced apogamy inDryopteris dilatata (Hoffm.) A. Gray andD. filix-mas (L.) Schott emend, and its interpretation of the two species. Ann. Bot. (London)18: 377–383.

    Google Scholar 

  • Marc, I. &B. E. S. Gunning. 1986. Immunofluorescent localization of cytoskeletal tubulin and actin during spermatogenesis inPteridium aquilinum (L.) Kuhn. Protoplasma134: 163–177.

    CAS  Google Scholar 

  • Marengo, N. P. 1949. A study of the cytoplasmic inclusions during sporogenesis inOnoclea sensibilis. Amer. J. Bot.36: 603–613.

    Google Scholar 

  • —. 1973. The fine structure of the dormant spore ofMatteuccia struthiopteris. Bull. Torrey Bot. Club100: 147–150.

    Google Scholar 

  • —. 1977. Ultrastructural features of the dividing meiocyte ofOnoclea sensibilis. Amer. J. Bot.64:600–601.

    Google Scholar 

  • —. 1979. The fine structure of the pre-meiotic stages of sporogenesis inOnoclea sensibilis. Amer. Fern J.69: 87–91.

    Google Scholar 

  • Mizuno, K., F. Sek, J. Perkin, S. Wick, J. Duniec &B. Gunning. 1985. Monoclonal antibodies specific to plant tubulin. Protoplasma129: 100–108.

    CAS  Google Scholar 

  • Munroe, M. H. &P. R. Bell. 1970. The fine structure of fern root cells showing apospory. Dev. Biol.23: 550–562.

    PubMed  CAS  Google Scholar 

  • —. 1969. Gametophyte formation in bracken fern root cultures. Canad. J. Bot.47:617–621.

    Google Scholar 

  • Myles, D. G. 1978. The fine structure of fertilization in the fernMarsilea vestita. J. Cell Biol.30:265–281.

    CAS  Google Scholar 

  • —. 1975. An ultrastructural study of the spermatozoid of the fernMarsilea vestita. J. Cell Sci.17: 633–645.

    PubMed  CAS  Google Scholar 

  • —. 1977. Spermiogenesis in the fernMarsilea vestita: Microtubules, nuclear shaping and cytomorphogenesis. J. Cell Sci.23: 57–83.

    PubMed  CAS  Google Scholar 

  • — & —. 1982. Shaping of the sperm nucleus inMarsilea: A distinction between factors responsible for shape generation and shape determination. Developm. Biol.90: 238–252.

    CAS  Google Scholar 

  • —. 1978. A freeze-fracture study of the nuclear envelope during spermiogenesis inMarsilea. Protoplasma93: 419–431.

    Google Scholar 

  • Nayar, B. K. &N. Bajpai. 1968. Morphology of the gametophytes of some species ofPellaea andNotholaena. J. Linn. Soc, Bot.59: 63–76.

    Google Scholar 

  • Neidhart, H. V. 1975. Elektronenmikroskopische und physiologie Untersuchungen zur Sporogenese vonFunaria hygrometrica Sibth. Ph.D. Dissertation University of Hanover.

  • Ooya, N. 1974. Induction of apogamy inEquisetum arvense. Bot. Mag. (Tokyo)87: 253–259.

    CAS  Google Scholar 

  • Pennell, R. I. &P. R. Bell. 1986. Intracellular RNA during microsporogenesis in plants:Taxus baccata as a model system. Acta Soc. Bot. Poloniae55: 11–16.

    CAS  Google Scholar 

  • — & —. 1987. Intracellular RNA during meiosis in microsporangia ofTaxus baccata. Amer. J. Bot.74: 444–450.

    CAS  Google Scholar 

  • —. 1986. The blepharoplast ofMarsilea: A structure concerned with basal body assembly lacking tubulin. Eur. J. Cell Biol.40: 238–241.

    Google Scholar 

  • Pettitt, J. M. 1971. Developmental mechanisms in heterospory. I. Megasporocyte degeneration inSelaginella. J. Linn. Soc. Bot.64: 237–246.

    Google Scholar 

  • —. 1976. Developmental mechanisms in heterospory. III. The plastid cycle during megasporogenesis inIsoetes. J. Cell Sci.20: 671–685.

    PubMed  CAS  Google Scholar 

  • —. 1977. Developmental mechanisms in heterospory: Features of post-meiotic regression inSelaginella. Ann. Bot.41: 117–125.

    Google Scholar 

  • —. 1978. Regression and elimination of cytoplasmic organelles during meiosis inLycopodium. Grana17: 99–105.

    Google Scholar 

  • Reitberger, A. 1964. Lineare Anordung der Chromosomen im Kern des Spermatozoids des LebermoosesSphaerocarpus donnellii. Naturwissenschaften51: 395–396.

    Google Scholar 

  • Robbins, R. R. &Z. B. Carothers. 1975. The occurrence and structure of centrosomes inLycopodium complanatum. Protoplasma86: 279–284.

    Google Scholar 

  • — & —. 1978. Spermatogenesis inLycopodium: The mature spermatozoid. Amer. J. Bot.65: 433–440.

    Google Scholar 

  • Robert, D. 1972. Le gametophyte femelle deSelaginella kraussiana (Kunze) A. Br. III. Ultrastructure et dé veloppement des archégones. Rev. Cytol., Biol. Vég.35: 165–242.

    Google Scholar 

  • —. 1974. Étude ultrastructurale de la spermiogénèse, notamment de la diffě renciation de l’appareil nucléaire, chez leSelaginella kraussiana (Kunze) A. Br. Ann. Sci. Nat. Bot. 12e. Sér.15:65–89.

    CAS  Google Scholar 

  • —. 1977. Le noyau du spermatozoid duSelaginella kraussiana. J. Ultrastruct. Res.58: 178–195.

    Google Scholar 

  • —. 1986. Nuclear organisation in the motile male gametes of the fernScolopendrium vulgare. J. Submicroscop. Cytol.18: 349–359.

    Google Scholar 

  • Rodkiewicz, B., J. Bednara, A. Mostowska, E. Duda &H. Stobiecka. 1986. The change in disposition of plastids and mitochondria during microsporogenesis and sporogenesis in some higher plants. Acta Bot. Neerl.35: 209–215.

    Google Scholar 

  • Sangwan, R. S. 1986. Formation and cytochemistry of nuclear vacuoles during meiosis inDatura. Eur. J. Cell Biol.40: 210–218.

    Google Scholar 

  • Schedlbauer, M. D. 1976. Fern gametophyte development: Controls of dimorphism inCeratopteris thalictroides. Amer. J. Bot.63: 1080–1087.

    Google Scholar 

  • Schneller, J. J. 1981. Evidence for intergeneric incompatibility in ferns. PL Syst. Evol.137: 45–56.

    Google Scholar 

  • Schraudolf, H. 1984. Ultrastructural events during sporogenesisof Anemia phyllitidis (L.) Sw. II. Spore wall formation. Beitr. Biol. Pflanzen59: 237–260.

    Google Scholar 

  • Sheffield, E. 1978. The establishment of the gametophytic phase in the life cycle of a fern. Ph.D. Dissertation. University of London.

  • —. 1984a. Apospory in the fernPteridium aquilinum (L.) Kuhn. I. Low temperature scanning electron microscopy. Cytobios39: 171–176.

    Google Scholar 

  • —. 1984b. Effects of dimethyl sulphoxide on the gametophytic and sporophytic phases ofPteridium aquilinum (L.) Kuhn. Ann. Bot. (London)54: 531–536.

    Google Scholar 

  • —. 1985. Cellular aspects of the initiation of aposporous outgrowth in ferns. Proc. Roy. Soc. Edinburgh86B: 45–50.

    Google Scholar 

  • —. 1983. Further experiments with ferns in culture: Regeneration. J. Biol. Educ.17: 183–184.

    Google Scholar 

  • —. 1978. Phytoferritin in the reproductive cells of a fern,Pteridium aquilinum (L.) Kuhn. Proc. Roy. Soc. London202B: 297–306.

    Google Scholar 

  • — & —. 1979. Ultrastructural aspects of sporogenesis in a fern,Pteridium aquilinum (L.) Kuhn. Ann. Bot.44: 393–405.

    Google Scholar 

  • — & —. 1981a. Experimental studies of apospory in ferns. Ann. Bot. (London)47: 187–195.

    Google Scholar 

  • — & —. 1981b. Cessation of vascular activity correlated with aposporous development inPteridium aquilinum (L.) Kuhn. New Phytol.88: 533–538.

    Google Scholar 

  • —, —. 1982. Tracheary occlusion in fronds ofPteridium aquilinum (L.) Kuhn showing apospory. New Phytol.90: 321–325.

    Google Scholar 

  • —. 1979. The development of nuclear vacuoles during meiosis in plants. Planta146: 597–601.

    Google Scholar 

  • —. 1983. Ultrastructural aspects of sporogenesis in the apogamous fernDryopteris borreri. J. Cell Sci.63: 125–134.

    PubMed  CAS  Google Scholar 

  • —. 1986.Pteridium herediae: A dangerous diploid bracken? Pages 301–307in R. T. Smith & J. A. Taylor (eds.), Bracken: Ecology, land use and control technology. Parthenon, Lancashire.

    Google Scholar 

  • Sigee, D. &P. R. Bell. 1971. The cytoplasmic incorporation of tritiated thymidine during oogenesis inPteridium aquilinum. J. Cell Sci.8: 467–487.

    PubMed  CAS  Google Scholar 

  • Singh, R., D. R. Bohra &B. D. Sharma. 1983. Mixed sporangia inIsoetes coromandelina. Pollen et Spores25: 41–47.

    Google Scholar 

  • Smith, M. M. &M. E. McCully. 1978. A critical evaluation of the specificity of aniline blue induced fluorescence. Protoplasma95: 229–254.

    CAS  Google Scholar 

  • Takahashi, C. 1962. Cytological study on induced apospory in ferns. Cytologia27: 79–96.

    Google Scholar 

  • Tourte, Y. 1970. Nature, origine et évolution d’enclaves cytoplasmiques particulières au cours de l’oogénèse chez lePteridium aquilinum (L.) Kuhn. Revue Cytol. Biol. Vég.33: 311–324.

    Google Scholar 

  • —. 1975. Étude infrastructurale de l’oogénèse chez une Pteridophyte. I. É volution des structures nucléaires. J. Microscopie Biol. Cell22: 87–108.

    Google Scholar 

  • —. 1980. Comportement diffé rentiel des chromatines paternelles au cours de l’embryogénèse d’une fougère:Marsilea vestita. Eur. J. Cell Biol.21: 28–36.

    PubMed  CAS  Google Scholar 

  • —, —. 1971. Quelques aspects de l’ oogénèse chez leMarsilea vestita (Hook. & Grev.). Ann. Univ. ARERS9: 5–11.

    Google Scholar 

  • Tryon, A. F. 1964. Platyzoma—A Queensland fern with incipient heterospory. Amer. J. Bot.51: 939–942.

    Google Scholar 

  • Vaudois, B. &Y. Tourte. 1979. Spermatogenesis in a pteridophyte. I. First stages of the motile apparatus. Cytobios24: 143–156.

    PubMed  CAS  Google Scholar 

  • Verma, S. C. 1960. Enucleate spores inIsoetes coromandelina L. Caryologia13: 274–284.

    Google Scholar 

  • —. 1976. Adaptive significance of simultaneous cytokinesis in pteridophytes. Phytomorphology26: 96–102.

    Google Scholar 

  • von Aderkas, P. 1986. Enhancement of apospory in liquid culture ofMatteuccia struthiopteris. Ann. Bot. (London)57: 505–510.

    Google Scholar 

  • Wakeford, R. J. &P. R. Bell. 1980. Fragmentation of condensed chromatin in nuclei of a plant sperm,Pteridium aquilinum (L.) Kuhn. Gamete Res.3: 291–298.

    CAS  Google Scholar 

  • Waterkeyn, L. &A. Bienfait. 1979. Production et dégradation de callose dans les stomates des fougères. La Cellule73: 81–97.

    Google Scholar 

  • Wettstein, D. &H. von Zech. 1962. The structure of nucleus and cytoplasm in hair cells during tobacco mosaic virus reproduction. Z. Naturforsch.176: 376–379.

    Google Scholar 

  • Whittier, D. P. 1966. Natural apospory inPteridium? Amer. Fern J.56: 61–64.

    Google Scholar 

  • —. 1970. The rate of gametophyte maturation in sexual and apogamous species of ferns. Phytomorphology20: 30–35.

    Google Scholar 

  • —. 1960. The induction of apogamy in the bracken fern. Canad. J. Bot.38: 925–930.

    CAS  Google Scholar 

  • Wolf, P. G. 1986. Electrophoretic evidence for diploidy and outcrossing in the genusPteridium (Bracken fern). M.Sc. Dissertation University of Kansas.

  • —. 1987. Electrophoretic evidence for genetic diploidy in the bracken fern (Pteridium aquilinum). Science236: 947–949.

    PubMed  CAS  Google Scholar 

  • Wolniak, S. M. 1983. Isolation and partial characterization of the multilayered structure of motile plant spermatozoids. J. Cell Biol.97: 206a.

    Google Scholar 

  • Yuasa, A. 1938. Cytological studies of spermatoteleosis and fertilization in Pteridophyta. Studies Tokugawa Inst.4: 1–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheffield, E., Bell, P.R. Current studies of the pteridophyte life cycle. Bot. Rev 53, 442–490 (1987). https://doi.org/10.1007/BF02858324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858324

Keywords

Navigation