Skip to main content
Log in

Velocity-dependent nuclear interaction

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

The single particle wave equation describing the motion of nucleons in nuclei, as derived from the nuclear many-body problem, is of a non-local form in coordinate space. It is shown, that in the effective mass approximation, this equation reduces to a velocity-dependent Schrödinger equation, which contains a spatially variable effective nucleon mass in a properly symmetrized kinetic energy operator. The eigenvalue problem is treated for the special case of the infinite harmonic oscillator potential as the local part of the interaction.

Riassunto

L’equazione d’onda di una singola particella che descrive il moto di nucleoni nei nuclei, come si deriva dal problema nucleare di più corpi, è di forma non locale nello spazio delle coordinate. Si dimostra che nell’approssimazione della massa effettiva quest’equazione si riduce a un’equazione di Schrödinger dipendente dalla velocità che contiene una massa nucleonica spazialmente variabile in un operatore di energia cinetica opportunamente simmetrizzato. Il problema degli autovalori è trattato per il caso speciale del potenziale di oscillatore armonico infinito come parte locale della interazione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A very comprehensive study of this problem, based on the work ofK. A. Brueckner, K. M. Watson, C. A. Levinson, H. M. Mahmoud, R. J. Eden andN. C. Francis, has been given byH. A. Bethe:Phys. Rev.,103, 1353 (1956); it also contains the references to the earlier literature.

    Article  ADS  MATH  Google Scholar 

  2. W. E. Frahn:Nuovo Cimento,4, 313 (1956).

    Article  Google Scholar 

  3. H. P. Duerr:Phys. Rev.,103, 469 (1956).

    Article  ADS  MATH  Google Scholar 

  4. M. H. Johnson andE. Teller:Phys. Rev.,98, 783 (1955).

    Article  ADS  MATH  Google Scholar 

  5. J. Meixner andF. W. Schäfke:Mathieusche Funktionen und Sphäroidfunktionen (Berlin, 1954).

  6. Note added in proof: Meanwhile,J. Meixner has treated the generalized equation (27) of the spheroidal functions, i.e. including the centrifugal term, forγ 2 ≫ 1 with a method similar to that used previously (J. Meixner:Z. angew. Math. Mech.,28, 304 (1948)) for the ordinary equation (18). His results agree exactly with ours, obtained by perturbation calculation, up to the order γ−2. One of us (W.E.F.) is much indebted to ProfessorMeixner for a private communication of his results.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. M. Morse andH. Feshbach:Methods of Theoretical Physics, vol. I (New York, 1953).

  8. M. Goeppert-Mayer andJ. H. D. Jensen:Elementary Theory of Nuclear Shell Structure (New York, 1955).

  9. A. A. Ross, R. D. Lawson andH. Mark:Phys. Rev.,104, 401 (1956).

    Article  ADS  MATH  Google Scholar 

  10. R. D. Woods andD. S. Saxon:Phys. Rev.,95, 577 (1954).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frahn, W.E., Lemmer, R.H. Velocity-dependent nuclear interaction. Nuovo Cim 5, 1564–1572 (1957). https://doi.org/10.1007/BF02856046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856046

Navigation