Skip to main content
Log in

Modulating inhibitory ligand-gated ion channels

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The glycine and γ-aminobutyric acid receptors (GlyR and GABAAR, respectively) are the major inhibitory neurotransmitter-gated receptors in the central nervous system of animals. Given the important role of these receptors in neuronal inhibition, they are prime targets of many therapeutic agents and are the object of intense studies aimed at correlating their structure and function. In this review, the structure and dynamics of these and other homologous members of the nicotinicoid superfamily are described. The modulatory actions of the major biological macromolecules that bind and allosterically affect these receptors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karlin A, Akabas MH. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins.Neuron. 1995;15:1231–1244.

    Article  PubMed  CAS  Google Scholar 

  2. Cascio M. Structure and function of the glycine receptor and related nicotinicoid receptors.J Biol Chem. 2004;279:19383–19386.

    Article  PubMed  CAS  Google Scholar 

  3. Brejc K, van Dijk WJ, Klaasen RV, et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors.Nature. 2001;411:269–276.

    Article  PubMed  CAS  Google Scholar 

  4. Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution.J Mol Biol. 2005;346:967–989.

    Article  PubMed  CAS  Google Scholar 

  5. Karlin A. Emerging structure of the nicotinic acetylcholine receptors.Nat Rev Neurosci. 2002;3:102–114.

    Article  PubMed  CAS  Google Scholar 

  6. Lynch JW. Molecular structure and function of the glycine receptor chloride channel.Physiol Rev. 2004;84:1051–1095.

    Article  PubMed  CAS  Google Scholar 

  7. Bowery NG, Smart TG. GABA and glycine as neurotransmitters: a brief history.Br J Pharmacol. 2006;147:S109-S119.

    Article  PubMed  CAS  Google Scholar 

  8. Todd AJ, Watt C, Spike RC, Sieghart W. Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord.J Neurosci. 1996;16:974–982.

    PubMed  CAS  Google Scholar 

  9. Jonas P, Bischofberger J, Sandkuhler J. Corelease of two fast neurotransmitters at a central synapse.Science. 1998;281:419–424.

    Article  PubMed  CAS  Google Scholar 

  10. O'Brien JA, Berger AJ. Cotransmission of GABA and glycine to brain stem motoneurons.J Neurophysiol. 1999;82:1638–1641.

    PubMed  Google Scholar 

  11. Russier M, Kopysova IL, Ankri N, Ferrand N, Debanne D. GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneuronsin vitro.J Physiol. 2002;541:123–137.

    Article  PubMed  CAS  Google Scholar 

  12. Young TL, Cepko CL. A role for ligand-gated ion channels in rod photoreceptor development.Neuron. 2004;41:867–879.

    Article  PubMed  CAS  Google Scholar 

  13. Stein V, Nicoll RA. GABA generates excitement.Neuron. 2003;37:375–378.

    Article  PubMed  CAS  Google Scholar 

  14. Ben-Ari Y. Excitatory actions of GABA during development: the nature of the nurture.Nat Rev Neurosci. 2002;3:728–739.

    Article  PubMed  CAS  Google Scholar 

  15. Kim G, Kandler K. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation.Nat Neurosci. 2003;6:282–290.

    Article  PubMed  CAS  Google Scholar 

  16. Li M, Lester HA. Ion channel diseases of the central nervous system.CNS Drug Rev. 2001;7:214–240.

    PubMed  CAS  Google Scholar 

  17. Gundlach AL. Disorder of the inhibitory glycine receptor: inherited myoclonus in Poll Hereford calves.FASEB J. 1990;4:2761–2766.

    PubMed  CAS  Google Scholar 

  18. Becker C-M, Schmieden V, Tarroni P, Strasser U, Betz H. Isoform-selective deficit of glycine receptors in the mouse mutantspastic.Neuron. 1992;8:283–289.

    Article  PubMed  CAS  Google Scholar 

  19. Shiang R, Ryan SG, Zhu YZ, Hahn AF, O'Connell P, Wasmuth JJ. Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia.Nat Genet. 1993;5:351–358.

    Article  PubMed  CAS  Google Scholar 

  20. Jones-Davis DM, Macdonald RL. GABAA receptor function and pharmacology in epilepsy and status epilepticus.Curr Opin Pharmacol. 2003;3:12–18.

    Article  PubMed  CAS  Google Scholar 

  21. Wong CG, 3rd, Bottiglieri T, 3rd, Snead OC, 3rd. GABA, γ-hydroxybutyric acid, and neurological disease.Ann Neurol. 2003;54:S3–12.

    Article  PubMed  CAS  Google Scholar 

  22. Pfeiffer F, Graham D, Betz H. Purification by affinity chromatography of the glycine receptor of rat spinal cord.J Biol Chem. 1982;257:9389–9393.

    PubMed  CAS  Google Scholar 

  23. Grudzinska J, Schemm R, Haeger S, et al. The β subunit determines the ligand binding properties of synaptic glycine receptors.Neuron.. 2005;45:727–739.

    Article  PubMed  CAS  Google Scholar 

  24. Donizelli M, Djite MA, Le Novere N. LGICdb: a manually curated sequence database after the genomes.Nucleic Acids Res. 2006;34:D267-D269.

    Article  PubMed  CAS  Google Scholar 

  25. Hevers W, Luddens H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes.Mol Neurobiol. 1998;18:35–86.

    Article  PubMed  CAS  Google Scholar 

  26. Sine SM, Wang HL, Bren N. Lysine scanning mutagenesis delineates structural model of the nicotinic receptor ligand binding domain.J Biol Chem. 2002;277:29210–29223.

    Article  PubMed  CAS  Google Scholar 

  27. Bouzat C, Gumilar F, Spitzmaul G, et al. Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel.Nature. 2004;430:896–900.

    Article  PubMed  CAS  Google Scholar 

  28. Cromer BA, Morton CJ, Parker MW. Anxiety over GABAA receptor structure relieved by AChBP.Trends Biochem Sci. 2002;27:280–287.

    Article  PubMed  CAS  Google Scholar 

  29. Henchman RH, Wang HL, Sine SM, Taylor P, McCammon JA. Asymmetric structural motions of the homoneric α7 nicotinic receptor ligand binding domain revealed by molecular dynamics simulation.Biophys J. 2003;85:3007–3018.

    Article  PubMed  CAS  Google Scholar 

  30. Nevin ST, Cromer BA, Haddrill JL, Morton CJ, Parker MW, Lynch JW. Insights into the structural basis for zinc inhibition of the glycine receptor.J Biol Chem. 2003;278:28985–28992.

    Article  PubMed  CAS  Google Scholar 

  31. Absalom NL, Lewis TM, Kaplan W, Pierce KD, Schofield PR. Role of charged residues in coupling ligand binding and channel activation in the extracellular domain of the glycine receptor.J Biol Chem. 2003;278:50151–50157.

    Article  PubMed  CAS  Google Scholar 

  32. Reeves DC, Lummis SC. The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel.Mol Membr Biol. 2002;19:11–26.

    Article  PubMed  CAS  Google Scholar 

  33. Grutter T, Prado de Carvalho L, Virginie D, Taly A, Fischer M, Changeux JP. A chimera encoding the fusion of an acetylcholine-binding protein to an ion channel is stabilized in a state close to the desensitized form of ligand-gated ion channels.C R Biol. 2005;328:223–234.

    Article  PubMed  CAS  Google Scholar 

  34. Horikoshi T, Asanuma A, Yanagisawa K, Anzai K, Goto S. Taurine and β-alanine act on both GABA and glycine receptors inXenopus oocyte injected with mouse brain messenger RNA.Brain Res. 1988;464:97–105.

    PubMed  CAS  Google Scholar 

  35. Wafford KA, Ebert B. Gaboxadol—a new awakening in sleep.Curr Opin Pharmacol. 2006;6:30–36.

    Article  PubMed  CAS  Google Scholar 

  36. Schmieden V, Kuhse J, Betz H. Mutation of glycine receptor subunit creates β-alanine receptor responsive to GABA.Science. 1993;262:256–258.

    Article  PubMed  CAS  Google Scholar 

  37. Bloomenthal AB, Goldwater E, Pritchett DB, Harrison NL. Biphasic modulation of the strychnine-sensitive glycine receptor by Zn2+.Mol Pharmacol. 1994;46:1156–1159.

    PubMed  CAS  Google Scholar 

  38. Lynch JW, Jacques P, Pierce KD, Schofield PR. Zinc potentiation of the glycine receptor chloride channel is mediated by allosteric pathways.J Neurochem. 1998;71:2159–2168.

    Article  PubMed  CAS  Google Scholar 

  39. Miller PS, Da Silva HM, Smart TG. Molecular basis for zinc potentiation at strychnine-sensitive glycine receptors.J Biol Chem. 2005;280:37877–37884.

    Article  PubMed  CAS  Google Scholar 

  40. Hosie AM, Dunne EL, Harvey RJ, Smart TG. Zinc-mediated inhibition of GABAA receptors: discrete binding sites underlie subtype specificity.Nat Neurosci. 2003;6:362–369.

    Article  PubMed  CAS  Google Scholar 

  41. Chen Z, Dillon GH, Huang R. Molecular determinants of proton modulation of glycine receptors.J Biol Chem. 2004;279:876–883.

    Article  PubMed  CAS  Google Scholar 

  42. Wilkins ME, Hosie AM, Smart TG. Identification of a beta subunit TM2 residue mediating proton modulation of GABAA receptors.J Neurosci. 2002;22:5328–5333.

    PubMed  CAS  Google Scholar 

  43. Wilkins ME, Hosie AM, Smart TG. Proton modulation of recombinant GABAA receptors: influence of GABA concentration and the beta subunit TM2-TM3 domain.J Physiol. 2005;567:365–377.

    Article  PubMed  CAS  Google Scholar 

  44. Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore.Nature. 2003;423:949–955.

    Article  PubMed  CAS  Google Scholar 

  45. Auerbach A. Gating of acetylcholine receptor channels: Brownian motion across a broad transition state.Proc Natl Acad Sci USA. 2005;102:1408–1412.

    Article  PubMed  CAS  Google Scholar 

  46. Lummis SC, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel.Nature. 2005;438:248–252.

    Article  PubMed  CAS  Google Scholar 

  47. Xiu X, Hanek AP, Wang J, Lester HA, Dougherty DA. A unified view of the role of electrostatic interactions in modulating the gating of cys loop receptors.J Biol Chem. 2005;280:41655–41666.

    Article  PubMed  CAS  Google Scholar 

  48. Paas Y, Gibor G, Grailhe R, et al. Pore conformations and gating mechanism of a cys-loop receptor.Proc Natl Acad Sci USA. 2005;102:15877–15882.

    Article  PubMed  CAS  Google Scholar 

  49. Tang P, Mandal PK, Xu Y. NMR structures of the second transmembrane domain of the human glycine receptor α1 subunit: model of pore architecture and channel gating.Biophys J. 2002;83:252–262.

    Article  PubMed  CAS  Google Scholar 

  50. Kash TL, Trudell JR, Harrison NL. Structural elements involved in activation of the gamma-aminobutyric acid type A GABAA receptor.Biochem Soc Trans. 2004;32:540–546.

    Article  PubMed  CAS  Google Scholar 

  51. Kash TL, Jenkins A, Kelley JC, Trudell JR, Harrison NL. Coupling of agonist binding to channel gating in the GABAA receptor.Nature. 2003;421:272–275.

    Article  PubMed  CAS  Google Scholar 

  52. Schofield CM, Jenkins A, Harrison NL. A highly conserved aspartic acid residue in the signature disulfide loop of the α1 subunit is a determinant of gating in the glycine receptor.J Biol Chem. 2003;278:34079–34083.

    Article  PubMed  CAS  Google Scholar 

  53. Schofield CM, Trudell JR, Harrison NL. Alanine-scanning mutagenesis in the signature disulfide loop of the glycine receptor α1 subunit: critical residues for activation and modulation.Biochemistry. 2004;43:10058–10063.

    Article  PubMed  CAS  Google Scholar 

  54. Boileau AJ, Czajkowski C. Identification of transduction elements for benzodiazepine modulation of the GABAA receptor: three residues are required for allosteric coupling.J Neurosci. 1999;19:10213–10220.

    PubMed  CAS  Google Scholar 

  55. Tasneem A, Iyer LM, Jakobsson E, Aravind L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels.Genome Biol. 2005;6:R4.

    Article  PubMed  Google Scholar 

  56. Changeux J, Edelstein SJ. Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors.Curr Opin Neurobiol. 2001;11:369–377.

    Article  PubMed  CAS  Google Scholar 

  57. Williams DB, Akabas MH. γ-aminobutyric acid increases the water accessibility of M3 membrane-spanning segment residues in γ-aminobutyric acid type A receptors.Biophys J. 1999;77:2563–2574.

    Article  PubMed  CAS  Google Scholar 

  58. Williams DB, Akabas MH. Benzodiazepines induce a conformational change in the region of the γ-aminobutyric acid type A receptor α1-subunit M3 membrane-spanning segment.Mol Pharmacol. 2000;58:1129–1136.

    PubMed  CAS  Google Scholar 

  59. Horenstein J, Wagner DA, Cjajkowski C, Akabas MH. Protein mobility and GABA-induced conformational changes in GABAA receptor pore-lining M2 segment.Nat Neurosci. 2001;4:477–485.

    PubMed  CAS  Google Scholar 

  60. Bera AK, Chatav M, Akabas MH. GABAA receptor M2-M3 loop secondary structure and changes in accessibility during channel gating.J Biol Chem. 2002;277:43002–43010.

    Article  PubMed  CAS  Google Scholar 

  61. Horenstein J, Riegelhaupt P, Akabas MH. Differential protein mobility of the GABAA receptor α and β subunit channel-lining segments.J Biol Chem. 2005;280:1573–1581.

    Article  PubMed  CAS  Google Scholar 

  62. Lynch JW, Han NL, Haddrill J, Pierce KD, Schofield PR. The surface accessibility of the glycine, receptor M2-M3 loop is increased in the channel open state.J Neurosci. 2001;21:2589–2599.

    PubMed  CAS  Google Scholar 

  63. Shan Q, Haddrill JL, Lynch JW. Comparative surface accessibility of a pore-lining threonine residue (T6′) in the glycine and GABAA receptors.J Biol Chem. 2002;277:44845–44853.

    Article  PubMed  CAS  Google Scholar 

  64. Hawthorne R, Lynch JW. A picrotoxin-specific conformational change in the glycine receptor M2–M3 loop.J Biol Chem. 2005;280:35836–35843.

    Article  PubMed  CAS  Google Scholar 

  65. Lobo IA, Mascia MP, Trudell JR, Harris RA. Channel gating of the glycine receptor changes accessibility to residues implicated in receptor potentiation by alcohols and anesthetics.J Biol Chem. 2004;279:33919–33927.

    Article  PubMed  CAS  Google Scholar 

  66. Lobo IA, Trudell JR, Harris RA. Accessibility to residues in transmem brane segment four of the glycine receptor.Neuropharmacology. 2006;50:174–181.

    Article  PubMed  CAS  Google Scholar 

  67. Bera AK, Akabas MH. Spontaneous thermal motion of the GABAA receptor M2 channel-lining segments.J Biol Chem. 2005;280:35506–35512.

    Article  PubMed  CAS  Google Scholar 

  68. Han NL, Clements JD, Lynch JW. Comparison of taurine-and glycine-induced conformational changes in the M2–M3 domain of the glycine receptor.J Biol Chem. 2004;279:19559–19565.

    Article  PubMed  CAS  Google Scholar 

  69. Chang Y, Weiss DS. Site-specific fluorescence reveals distinct structural changes with GABA receptor activation and antagonism.Nat Neurosci. 2002;5:1163–1168.

    Article  PubMed  CAS  Google Scholar 

  70. Lee AG. Lipid-protein interactions in biological membranes: a structural perspective.Biochim Biophys Acta. 2003;1612:1–40.

    Article  PubMed  CAS  Google Scholar 

  71. Anderson RG, Jacobson K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains.Science. 2002;296:1821–1825.

    Article  PubMed  CAS  Google Scholar 

  72. Tillman T, Cascio M. Effects of membrane lipids on ion channel structure and function.Cell Biochem Biophys. 2003;38:161–190.

    Article  PubMed  CAS  Google Scholar 

  73. Cascio M. Connexins and their environment: effects of lipids composition on ion channels.Biochim Biophys Acta. 2005;1711:142–153.

    Article  PubMed  CAS  Google Scholar 

  74. Barrantes FJ. Structural basis for lipid modulation of nicotinic acetylcholine receptor function.Brain Res Brain Res Rev. 2004;47:71–95.

    Article  PubMed  CAS  Google Scholar 

  75. Baenziger JE, Morris M-L, Darsaut TE, Ryan SE. Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor.J Biol Chem. 2000;275:777–784.

    Article  PubMed  CAS  Google Scholar 

  76. daCosta CJ, Ogrel AA, McCardy EA, Blanton MP, Baenziger JE. Lipid-protein interactions at the nicotinic acetylcholine receptor. A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers.J Biol Chem. 2002;277:201–208.

    Article  PubMed  CAS  Google Scholar 

  77. daCosta CJ, Wagg ID, McKay ME, Baenziger JE. Phosphatidic acid and phosphatidylserine have distinct structural and functional interactions with the nicotinic acetylcholine receptor.J Biol Chem. 2004;279:14967–14974.

    Article  PubMed  CAS  Google Scholar 

  78. Blanton MP, Cohen JB. Identifying the lipid-protein interface of theTorpedo nicotinic acetylcholine receptor: secondary structure implications.Biochemistry. 1994;33:2859–2872.

    Article  PubMed  CAS  Google Scholar 

  79. Blanton MP, McCardy EA, Huggins A, Parikh D. Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16.Biochemistry. 1998;37:14545–14555.

    Article  PubMed  CAS  Google Scholar 

  80. Leite JF, Blanton MP, Shahgholi M, Dougherty DA, Lester HA. Conformation-dependent hydrophobic photolabeling of the nicotinic receptor: electrophysiology-coordinated photochemistry and mass spectrometry.Proc Natl Acad Sci USA. 2003;100:13054–13059.

    Article  PubMed  CAS  Google Scholar 

  81. Hamouda AK, Chiara DC, Sauls D, Cohen JB, Blanton MP. Cholesterol interacts with transmembrane α-helices M1, M3, and M4 of theTorpedo nicotinic acetylcholine receptor: photolabeling studies using [(3)h]azicholesterol.Biochemistry. 2006;45:976–986.

    Article  PubMed  CAS  Google Scholar 

  82. Barrantes FJ, Antollini SS, Blanton MP, Prieto M. Topography of nicotinic acetylcholine receptor membrane-embedded domains.J Biol Chem. 2000;275:37333–37339.

    Article  PubMed  CAS  Google Scholar 

  83. Mantipragada SB, Horvath LI, Arias HR, et al. Lipid-protein interactions and effect of local anesthetics in acetylcholine receptor-rich membranes fromTorpedo marmorata electric organ.Biochemistry. 2003;42:9167–9175.

    Article  PubMed  CAS  Google Scholar 

  84. Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease.Nature. 2005;438:612–621.

    Article  PubMed  CAS  Google Scholar 

  85. Corbin J, Wang HH, Blanton MP. Identifying the cholesterol binding domain in the nicotinic acetylcholine receptor with [125I]azido-cholesterol.Biochim Biophys Acta. 1998;1414:65–74.

    Article  PubMed  CAS  Google Scholar 

  86. Jones OT, McNamee MG. Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor.Biochemistry. 1988;27:2364–2374.

    Article  PubMed  CAS  Google Scholar 

  87. Addona GH, Sandermann HJ, Kloczewiak MA, Husain SS, Miller KW. Where does cholesterol act during activation of the nicotinic acetylcholine receptor?Biochim Biophys Acta. 1998;1370:299–309.

    Article  PubMed  CAS  Google Scholar 

  88. Laube B. Membrane cholesterol affects the pharmacology of the recombinant inhibitory glycine receptor. 33rd Society for Neuroscience Annual Meeting Neurobiology of Lipids Sessions.Neurobiol Lipids. 2003; Available at: http://neurobiologyoflipids.org/content/2/3/.

  89. Sooksawate T, Simmonds MA. Influence of membrane cholesterol on modulation of the GABAA receptor by neuroactive steroids and other potentiators.Br J Pharmacol. 2001;134:1303–1311.

    Article  PubMed  CAS  Google Scholar 

  90. Sooksawate T, Simmonds MA. Effects of membrane cholesterol on the sensitivity of the GABAA receptor to GABA in acutely dissociated rat hippocampal neurones.Neuropharmacology. 2001;40:178–184.

    Article  PubMed  CAS  Google Scholar 

  91. Cascio M, Shenkel S, Grodzicki RL, Sigworth FJ, Foxi RO. Functional reconstitution and characterization of recombinant human α1-glycine receptors.J Biol Chem. 2001;276:20981–20988.

    Article  PubMed  CAS  Google Scholar 

  92. Cantor RS. Lipid composition and the lateral pressure profile in bilayers.Biophys J. 1999;76:2625–2639.

    Article  PubMed  CAS  Google Scholar 

  93. Cantor RS. Receptor desensitization by neurotransmitters in membranes: are neurotransmitters the endogenous anesthetics?Biochemistry. 2003;42:11891–11897.

    Article  PubMed  CAS  Google Scholar 

  94. Trudell JR, Bertaccini E. Molecular modeling of specific and non-specific anaesthetic interactions.Br J Anaesth. 2002;89:32–40.

    Article  PubMed  CAS  Google Scholar 

  95. Miller KW. The nature of sites of general anaesthetic action.Br J Anaesth. 2002;89:17–31.

    Article  PubMed  CAS  Google Scholar 

  96. Yamakura T, Bertaccini E, Trudell JR, Harris RA. Anesthetics and ion channels: molecular models and sites of action.Annu Rev Pharmacol Toxicol. 2001;41:23–51.

    Article  PubMed  CAS  Google Scholar 

  97. Hemmings HC, Jr, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. Emerging molecular mechanisms of general anesthetic action.Trends Pharmacol Sci. 2005;26:503–510.

    Article  PubMed  CAS  Google Scholar 

  98. Beckstead MJ, Weiner JL, Eger EI, Gong DH, Mihic SJ. Glycine and GABAA receptor function is enhanced by inhaled drugs of abuse.Mol Pharmacol. 2000;57:1199–1205.

    PubMed  CAS  Google Scholar 

  99. Mihic SJ, Ye Q, Wick MJ, et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors.Nature. 1997;389:385–389.

    Article  PubMed  CAS  Google Scholar 

  100. Mascia MP, Trudell JR, Harris RA. Specific binding sites for alcohols and anesthetics on ligand-gated ion channels.Proc Natl Acad Sci USA. 2000;97:9305–9310.

    Article  PubMed  CAS  Google Scholar 

  101. Lobo IA, Harris RA. Sites of alcohol and volatile anesthetic action on glycine receptors.Int Rev Neurobiol. 2005;65:53–87.

    Article  PubMed  CAS  Google Scholar 

  102. Jung S, Akabas MH, Harris RA. Functional and structural analysis of the GABAA receptor α1 subunit during channel gating and alcohol modulation.J Biol Chem. 2005;280:308–316.

    PubMed  CAS  Google Scholar 

  103. Jung S, Harris RA. Sites in TM2 and 3 are critical for alcohol-induced conformational changes in GABA receptors.J Neurochem. 2006;96:885–892.

    Article  PubMed  CAS  Google Scholar 

  104. Jenkins A, Andreasen A, Trudell JR, Harrison NL. Tryptophan scanning mutagenesis in TM4 of the GABAA receptor alphal subunit: implications for modulation by inhaled anesthetics and ion channel structure.Neuropharmacology. 2002;43:669–678.

    Article  PubMed  CAS  Google Scholar 

  105. Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABAA receptor.Nat Rev Neurosci. 2005;6:565–575.

    Article  PubMed  CAS  Google Scholar 

  106. Rick CE, Ye Q, Finn SE, Harrison NL. Neurosteroids act on the GABAA receptor at sites on the N-terminal side of the middle of TM2.Neuroreport. 1998;9:379–383.

    Article  PubMed  CAS  Google Scholar 

  107. Carlson BX, Engblom AC, Kristiansen U, Schousboe A, Olsen RW. A single glycine residue at the entrance to the first membrane-spanning domain of the GABAA receptor β2 subunit affects allosteric sensitivity to GABA and anesthetics.Mol Pharmacol. 2000;57:474–484.

    PubMed  CAS  Google Scholar 

  108. Maksay G, Laube B, Betz H. Subunit-specific modulation of glycine receptors by neurosteroids.Neuropharmacology. 2001;41:369–376.

    Article  PubMed  CAS  Google Scholar 

  109. Eser D, Romeo E, Baghai TC, et al. Neuroactive steroids as modulators of depression and anxiety.Neuroscience. 2006;138:1041–1048.

    Article  PubMed  CAS  Google Scholar 

  110. Belelli D, Herd MB, Mitchell EA, et al. Neuroactive steroids and inhibitory neurotransmission: mechanisms of action and physiological relevance.Neuroscience. 2006;138:821–829.

    Article  PubMed  CAS  Google Scholar 

  111. Soderpalm B, Ericson M, Olausson P, Blomqvist O, Engel JA. Nicotinic mechanisms involved in the dopamine activating and reinforcing properties of ethanol.Behav Brain Res. 2000;113:85–96.

    Article  PubMed  CAS  Google Scholar 

  112. Laviolette SR, van der Kooy D. The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour.Nat Rev Neurosci. 2004;5:55–65.

    Article  PubMed  CAS  Google Scholar 

  113. Malcolm RJ. GABA systems, benzodiazepines, and substance dependence.J Clin Psychiatry. 2003;64:36–40.

    PubMed  CAS  Google Scholar 

  114. Davies M. The role of GABAA receptors in mediating the effects of alcohol in the central nervous system.J Psychiatry Neurosci. 2003;28:263–274.

    PubMed  Google Scholar 

  115. Molander A, Lof E, Stomberg R, Ericson M, Soderpalm B. Involvement of accumbal glycine receptors in the regulation of voluntary ethanol intake in the rat.Alcohol Clin Exp Res. 2005;29:38–45.

    Article  PubMed  CAS  Google Scholar 

  116. Molander A, Soderpalm B. Accumbal strychnine-sensitive glycine receptors: an access point for ethanol to the brain reward system.Alcohol Clin Exp Res. 2005;29:27–37.

    Article  PubMed  CAS  Google Scholar 

  117. Ye JH, Tao L, Ren J, et al. Ethanol potentiation of glycine-induced responses in dissociated neurons of rat ventral tegmental area.J Pharmacol Exp Ther. 2001;296:77–83.

    PubMed  CAS  Google Scholar 

  118. Ren J, Ye JH, Liu PL, Krnjevic K, McArdle JJ. Cocaine decreases the glycine-induced Cl current of acutely dissociated rat hippocampal neurons.Eur J Pharmacol. 1999;367:125–130.

    Article  PubMed  CAS  Google Scholar 

  119. Beckstead MJ, 2nd, Weiner JL, 2nd, Eger EI, 2nd, Gong DH, Mihic SJ. Glycine and γ-aminobutyric acid receptor function is enhanced by inhaled drugs of abuse.Mol Pharmacol. 2000;57:1199–1205.

    PubMed  CAS  Google Scholar 

  120. Foster AC, Kemp JA. Glutamate- and GABA-based CNS therapeutics.Curr Opin Pharmacol. 2006;6:7–17.

    Article  PubMed  CAS  Google Scholar 

  121. Rogawski MA, Loscher W. The neurobiology of antiepileptic drugs.Nat Rev Neurosci. 2004;5:553–564.

    Article  PubMed  CAS  Google Scholar 

  122. Kaindl AM, Asimiadou S, Manthey D, Hagen MV, Turski L, Ikonomidou C. Antiepileptic drugs and the developing brain.Cell Mol Life Sci. 2006;63:399–413.

    Article  PubMed  CAS  Google Scholar 

  123. Sigel E, Schaerer MT, Buhr A, Baur R. The benzodiazepine binding pocket of recombinant α1bα2γ2 GABAA receptors: relative orientation of ligands and amino acid side chains.Mol Pharmacol. 1998;54:1097–1105.

    PubMed  CAS  Google Scholar 

  124. Haefely W, Kulcsar A, Mohler H. Possible involvement of GABA in the central actions of benzodiazepines.Psychopharmacol Bull. 1975;11:58–59.

    PubMed  CAS  Google Scholar 

  125. Ramakrishnan L, Hess GP. Picrotoxin inhibition mechanism of a GABAA receptor investigated by a laser-pulse photolysis technique.Biochemistry. 2005;44:8523–8532.

    Article  PubMed  CAS  Google Scholar 

  126. Legendre P. The glycinergic inhibitory synapse.Cell Mol Life Sci. 2001;58:760–793.

    Article  PubMed  CAS  Google Scholar 

  127. Alldred MJ, Mulder-Rosi J, Lingenfelter SE, Chen G, Luscher B. Distinct γ2 subunit domains mediate clustering and synaptic function of postysnaptic GABAA receptors and gephyrin.J Neurosci. 2005;25:594–603.

    Article  PubMed  CAS  Google Scholar 

  128. Huang ZJ. Subcellular organization of GABA ergic synapses: role of ankyrins and L1 cell adhesion molecules.Nat Neurosci. 2006;9:163–166.

    Article  PubMed  CAS  Google Scholar 

  129. Sola M, Bavro VN, Timmins J, et al. Structural basis of dynamic glycine receptor clustering by gephyrin.EMBO J. 2004;23:2510–2519.

    Article  PubMed  CAS  Google Scholar 

  130. Yevenes GE, Peoples RW, Tapia JC, et al. Modulation of glycine-activated ion channel function by G-protein βγ subunits.Nat Neurosci. 2003;6:819–824.

    Article  PubMed  CAS  Google Scholar 

  131. Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB. Direct protein-protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors.Nature. 2000;403:274–280.

    Article  PubMed  CAS  Google Scholar 

  132. Luscher B, Keller CA. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses.Pharmacol Ther. 2004;102:195–221.

    Article  PubMed  CAS  Google Scholar 

  133. Collingridge GL, Isaac JT, Wang YT. Receptor trafficking and synaptic plasticity.Nat Rev Neurosci. 2004;5:952–962.

    Article  PubMed  CAS  Google Scholar 

  134. Vaello M-L, Ruiz-Gómez A, Lerma J, Mayor FJ. Modulation of inhibitory glycine receptors by phosphorylation by protein kinase C and cAMP-dependent protein kinase.J Biol Chem. 1994;269:2002–2008.

    PubMed  CAS  Google Scholar 

  135. Caraiscos VB, Mihic SJ, MacDonald JF, Orser BA. Tyrosine kinases enhance the function of glycine receptors in rat hippocampal neurons and human α1β glycine receptors.J Physiol. 2002;539:495–502.

    Article  PubMed  CAS  Google Scholar 

  136. Song M, Messing RO. Protein kinase C regulation of GABAA receptors.Cell Mol Life Sci. 2005;62:119–127.

    Article  PubMed  CAS  Google Scholar 

  137. Gentet LJ, Clements JD. Binding site stoichiometry and the effects of phosphorylation on human α1 homomeric glycine receptors.J Physiol. 2002;544:97–106.

    Article  PubMed  CAS  Google Scholar 

  138. Harvey RJ, Depner UB, Wassle H, et al. Gly R α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization.Science. 2004;304:884–887.

    Article  PubMed  CAS  Google Scholar 

  139. Lynch JW, Callister RJ. Glycine receptors: a new therapeutic target in pain pathways.Curr Opin Investig Drugs. 2006;7:48–53.

    PubMed  CAS  Google Scholar 

  140. Laube B, Maksay G, Schemm R, Betz H. Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses?Trends Pharmacol Sci. 2002;23:519–527.

    Article  PubMed  CAS  Google Scholar 

  141. Birch PJ, Dekker LV, James IF, Southan A, Cronk D. Strategies to identify ion channel modulators: current and novel approaches to target neuropathic pain.Drug Discov Today. 2004;9:410–418.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Cascio.

Additional information

Published: May 26, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascio, M. Modulating inhibitory ligand-gated ion channels. AAPS J 8, 40 (2006). https://doi.org/10.1007/BF02854906

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854906

Keywords

Navigation