Skip to main content

Advertisement

Log in

Utilization of potatoes for life support systems in space: III. Productivity at successive harvest dates under 12-H and 24-H photoperiods

  • Published:
American Potato Journal Aims and scope Submit manuscript

Abstract

Potatoes are among several crops under consideration for use in controlled ecological life support systems (CELSS) being proposed for space colonies. Efficient crop production for such life support systems will require nearoptimal growing conditions with harvests taken when production per unit area per unit time is maximum. To determine this maximum for potato, cv. Norland plants were grown in walk-in growth rooms under 12-h and 24-h photoperiods at 16 C and harvested at 42,63, 84,105,126 and 148 days from planting. At 42 days, plants were encaged in wire fence cylinders with a cross-sectional area of 0.2 m2. The dry weights (dwt) of tubers and of the entire plants increased under both photoperiods until the final harvest date (148 days), reaching 572 g tuber dwt and 704 g total dwt under 12-h, and 791 g tuber dwt and 972 g total dwt under 24-h. At a spacing of 0.2 m2 per plant, the 148-day tuber production from plants under continuous light would equate to nearly 40t ha-1 dry matter (200t fresh weight), approximately twice that of exceptionally high field yields. Tuber productivity (g m-2 day-1) under the 24-h photoperiod reached a maximum of 29.4 g dwt m-2 day-1 at 126 days, but continued to rise throughout the experiment under the 12-h photoperiod, reaching 19.5 g dwt m-2 day-1 at 148 days. With a productivity of 29.4 g tuber dwt m-2 day-1, approximately 25 m2 would continuously provide the daily dietary energy requirements for one human.

Resumen

La papa es uno de los cultivos que están siendo considerados para utilizarlos en los Sistemas Ambientales Cerrados para Sostener la Vida (SACSV) que han sido propuestos para las colonias espaciales. La eficiencia en la producción de cultivos para tales sistemas de sostenimiento de la vida habrá de requerir condiciones de crecimiento cercanas al óptimo, para cosechar cuando la producción, por unidad de área y unidad de tiempo, sea máxima. Para determinar la maxima producción del cultivo de papa, se cultivaron en cámaras de crecimiento, que permitían el ingreso, plantas del cv. Norland, bajo fotoperíodos de 12 y 24 horas a 16 C, con cosechas a los 42, 63, 84, 105, 126 y 148 días de la siembra. A los 42 días, las plantas fueron colocados en cilindros de malla para cercos con una sección transversal de 0,2 m2. Los pesos secos (p.s.) de los tubérculos y del total de la planta se incrementaron para ambos fotoperíodos hasta la última fecha de cosecha (148 días), alcanzando 572 g de peso seco de tubérculo y 704 g de peso seco total bajo el fotoperíodo de 12 horas, y 791 g de peso seco de tubérculo y 972 g de peso seco total, bajo el fotoperíodo de 24 horas. En un espacio de 0,2 m2 por planta, la producción de tubérculos, a los 148 días, en las plantas bajo luz continua, sería cercana a las 40 t ha-1 de materia seca (200 t de peso fresco), aproximadamente el doble de la lograda con rendimientos-excepcionalmente altos-obtenidos en el campo. La productividad de los tubérculos (g m-2 día-1) bajo el fotoperiodo de 24 horas alcanzó un máximo de 29,4 g de peso seco m-2 día-1 a los 126 días de la siembra, pero continuó subiendo durante todo el experimento bajo el fotoperíodo de 12 horas, alcanzando 19,5 g de peso seco m-2 día-1 a los 148 dias. Con una productividad de 29,4 g de peso seco de tubérculo m-2 día-1, unos 25 m2 proveerian de manera continua, la energía dietética necesaria para cubrir las necesidades diarias de un ser humano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Bodlaender, K.B.A. 1963. Influence of temperature, radiation, and photoperiod on development and yield, pp. 199–210. In. J.D. Ivins, F.L. Milthorpe(eds.). The growth of the potato. Butterworths, London.

    Google Scholar 

  2. Dwelle, R.B. 1985. Photosynthesis and photoassimilate partitioning. pp. 35–38.In: P.H. Li (ed.). Potato physiology. Academic Press, Inc. Orlando, FL.

    Google Scholar 

  3. Hammer, P.A., T.W. Tibbitts, R.W. Langhans and J.C. McFarlane. 1978. Base-line growth studies of ‘Grand Rapids’ lettuce in controlled environments. J Am Hortic Sci 103:649–655.

    Google Scholar 

  4. Ku, S.B., G.E. Edwards and C.B. Tanner. 1977. Effects of light, carbon dioxide, and temperature on photosynthesis, oxygen inhibition of photosynthesis, and transpiration inSolatium tuberosum. Plant Physiol 59:868–872.

    PubMed  CAS  Google Scholar 

  5. MacElroy, R.D. and J. Bredt. 1985. Controlled ecological life support system. Life support systems in space travel: current concepts and future directions of CELSS. NASA Conf. Pub. 2378. XXV COSPAR Meeting, Graz, Austria.

  6. McCown, B.H. and I. Kass. 1977. Effect of production temperature of seed potatoes on subsequent yielding potential. Am Potato J 54:277–287.

    Google Scholar 

  7. Menzel, C.M. 1985. Tuberization in potato at high temperatures: interaction between temperature and irradiance. Ann Bot 55:35–39.

    CAS  Google Scholar 

  8. Milov, M.A. and G.M. Novikova. 1975. Gas exchange and transpiration of higher plants in cultivation under artificial conditions. pp. 13–20.In: I.I. Gitel’zon. Problems of creating biotechnical systems of human life support. NASA Technical Translation TT F-17533. Washington, DC.

    Google Scholar 

  9. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–479.

    Article  CAS  Google Scholar 

  10. Roztropowicz, S. and K. Rykaczewska. 1982. Influence of light intensity on growth and yield of the potato. Biultetyn Inst Ziemniaka 27:101–109.

    Google Scholar 

  11. Tibbitts, T.W. and D.K. Alford. 1982. Controlled ecological life support system: Use of higher plants. NASA Conf Pub 2231. Ames Research Center, Moffett Field, CA.

    Google Scholar 

  12. Wheeler, R.M. and T.W. Tibbitts. 1986a. Growth and tuberization of potato (Solarium tuberosum L.) under continuous light. Plant Physiol 80:801–804.

    Article  PubMed  CAS  Google Scholar 

  13. Wheeler, R.M. and T.W. Tibbitts. 1986b. Utilization of potatoes for life support systems in space. I. Cultivar-photoperiod interactions. Am Potato J 63:315–323.

    PubMed  CAS  Google Scholar 

  14. Wheeler, R.M., K.L. Steffen, T.W. Tibbitts and J.P. Palta. 1986. Utilization of potatoes for life support systems in space. II. Effects of temperature under 24- and 12-h photoperiods. Am Potato J 63:639–647.

    PubMed  CAS  Google Scholar 

  15. Zaag, van der D.E. and W.G. Burton. 1978. Potential yield of the potato crop and its limitations. pp. 7–22.In: Survey Papers, 7th Trien Conf Cur Assoc Potato Res, Warsaw, Poland.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by College of Agricultural and Life Sciences, Univ. of Wisconsin, Madison, and NASA Cooperative Agreements NCC 2-136 and NCC 2-301.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, R.M., Tibbitts, T.W. Utilization of potatoes for life support systems in space: III. Productivity at successive harvest dates under 12-H and 24-H photoperiods. American Potato Journal 64, 311–320 (1987). https://doi.org/10.1007/BF02853523

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02853523

Additional Key Words

Navigation