Skip to main content
Log in

Increased antioxidant capacity in healthy volunteers taking a mixture of oral antioxidants versus vitamin C or E supplementation

  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

The objectives of this study were (1) to evaluate the capacity of human plasma that had been obtained from healthy adult volunteers before and after they ingested vitamin E or C to inhibit induced lipoperoxidation in vitro (antioxidant capacity of plasma [ACP]), and (2) to compare the efficiency of these vitamins with that of a commercial mixture of antioxidant vitamins, cofactors, and minerals (MAOx). Seventy-nine healthy individuals between 19 and 23 y of age were randomly assigned to 1 of 4 groups. Each received a daily dose of antioxidants for 7 d: vitamin C (n=18; 500 mg), vitamin E (n=21; 400 IU), vitamins C and E (n=19), or MAOx (n=21; 1.2 g). ACP and plasma malondialdehyde were measured at 4 and 24 h and 7 d. ACP increased significantly (P<.05) in all 4 groups within 4 h of antioxidant intake, and this effect was sustained throughout supplementation. Plasma ACP increased significantly over basal values in the group taking MAOx; relative increases were 42%, 44%, and 55% at 4 h, 24 h, and 7 d, respectively (P<.001). Smaller increases in plasma ACP were observed in the vitamin C group (25%, 32%, and 36%) and, specifically, in the vitamin E group (17%, 24%, and 28%) (P<.05). The mixture of vitamins and minerals was comparatively more efficient than vitamin C or E alone, presumably because MAOx contains various antioxidant compounds with different redox potentials, leading to the possible development of chain reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sies H. Oxidative stress: oxidants and antioxidants.Exp Physiol. 1997;408:289–291.

    Google Scholar 

  2. DiSilvestro RA. Zinc in relation to diabetes and oxidative disease.J Nutr. 2000;130:1509S-1511S.

    PubMed  CAS  Google Scholar 

  3. Jose HJ, Berenice SG, Cecilia VR. Induction of antioxidant enzymes by dexamethasone in the adult rat lung.Life Sci. 1997;60:2059–2067.

    Article  PubMed  CAS  Google Scholar 

  4. Islam KN, Kayanoki Y, Kaneto H, et al. TGF-β1 triggers oxidative modifications and enhances apoptosis in hit cells through accumulation of reactive oxygen species by suppression of catalase and glutathione peroxidase.Free Radic Biol Med. 1997;22:1007–1017.

    Article  PubMed  CAS  Google Scholar 

  5. Moutet M, Dálessio P, Malette P, Devaux V, Chaudiére J. Glutathione peroxidase mimics prevent TNFα- and neutrophil-induced endothelial alterations.Free Radic Biol Med. 1998;25:270–281.

    Article  PubMed  CAS  Google Scholar 

  6. Winterbourn CC, Metodiewa D. The reaction of superoxide with reduced glutathione.Arch Biochem Biophys. 1994;314:284–290.

    Article  PubMed  CAS  Google Scholar 

  7. Ames BN, Gold LS, Willell WC. The causes and prevention of cancer.Proc Natl Acad Sci USA. 1995;92:5258–5265.

    Article  PubMed  CAS  Google Scholar 

  8. Yu BP. Cellular defenses against damage from reactive oxygen species.Physiol Rev. 1994;74:139–162.

    PubMed  CAS  Google Scholar 

  9. Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000: a historical look to the future.Ann N Y Acad Sci. 2000;899:136–147.

    Article  PubMed  CAS  Google Scholar 

  10. Bruno O, Brullo C, Arduino N, et al. Synthesis and biological evaluation of neutrophilic inflammation inhibitors.Farmaco. 2004;59:223–235.

    Article  PubMed  CAS  Google Scholar 

  11. Perticone F, Ceravolo R, Candigliota M, et al. Obesity and body fat distribution induce endothe- lial dysfunction by oxidative stress: protective effect of vitamin C.Diabetes. 2001;50:159–165.

    Article  PubMed  CAS  Google Scholar 

  12. Sjoholm A, Berggren PO, Cooney RV. Gamma-tocopherol partially protects insulin-secreting cells against functional inhibition by nitric oxide.Biochem Biophys Res Commun. 2000;277:334–340.

    Article  PubMed  CAS  Google Scholar 

  13. Hicks JJ, Medina-Navarro R. Inhibitory capacity of human serum on induced microsomal lipoperoxidation.Arch Med Res. 1995;26:169–172.

    PubMed  CAS  Google Scholar 

  14. Ullegaddi R, Powers HJ, Gariballa SE. Antioxidant supplementation with or without B-group vitamins after acute ischemic stroke: a randomized controlled trial.JPEN J Parenter Enteral Nutr. 2006;30:108–114.

    Article  PubMed  CAS  Google Scholar 

  15. Nandi D, Patra RC, Swarup D. Effect of cysteine, methionine, ascorbic acid and thiamine on arsenic-induced oxidative stress and biochemical alterations in rats.Toxicology. 2005;211:26–35.

    Article  PubMed  CAS  Google Scholar 

  16. Anand SS. Protective effect of vitamin B6 in chromium-induced oxidative stress in liver.J Appl Toxicol. 2005;25:440–443.

    Article  PubMed  CAS  Google Scholar 

  17. Tejero-Taldo MI, Kramer JH, Mak IuT, Komarov AM, Weglicki WB. The nerve-heart connection in the pro-oxidant response to Mg-deficiency.Heart Fail Rev. 2006;11:35–44.

    Article  PubMed  CAS  Google Scholar 

  18. Bray TM, Bettger WJ. The physiological role of zinc as an antioxidant.Free Radic Biol Med. 1990;8:281–291.

    Article  PubMed  CAS  Google Scholar 

  19. de Lorgeril M, Salen P. Selenium and antioxidant defenses as major mediators in the development of chronic heart failure.Heart Fail Rev. 2006;11:13–17.

    Article  PubMed  CAS  Google Scholar 

  20. Olivares-Corichi IM, Medina-Santillan R, Fernández del Valle-Laisequilla C, Alvaréz P, Hicks JJ. Increase of plasma antioxidant capacity with a novel formulation of antioxidants.Proc West Pharmacol Soc. 2003;46:45–47.

    PubMed  CAS  Google Scholar 

  21. Bird RP, Draper H. Comparative studies on the methods of malondialdehyde determinations.Methods Enzymol. 1984;105:299–305.

    PubMed  CAS  Google Scholar 

  22. Beyer CE, Steketee JD, Saphier D. Antioxidant properties of melatonin—an emerging mystery.Biochem Pharmacol. 1998;56:1265–1272.

    Article  PubMed  CAS  Google Scholar 

  23. Reiter RJ, Tan DX, Qi W, Manchester LC, Karbownik M, Calvo JR. Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo.Biol Signals Recept. 2000;9:160–171.

    Article  PubMed  CAS  Google Scholar 

  24. Omenaas E, Fluge O, Buist AS, Vollmer WM, Gulsvik A. Dietary vitamin C intake is inversely related to cough and wheeze in young smokers.Respir Med. 2003;97:134–142.

    Article  PubMed  CAS  Google Scholar 

  25. Regelson W, Loria R, Kalimi M. Hormonal intervention: “buffer hormones” or “state dependency.” The role of dehydroepiandrosterone (DHEA), thyroid hormone, estrogen and hypophysectomy in aging.Ann N Y Acad Sci. 1988;521:260–273.

    Article  PubMed  CAS  Google Scholar 

  26. Olivares-Corichi IM, Guzmán-Grenfell AM, Sierra Vargas MP, Mendoza Atencio R, Hicks Gómez JJ. Perspectives of the use of antioxidants as a complement in asthma treatment [in Spanish].Rev Inst Nal Enf Resp Mex. 2005;18:154–161.

    Google Scholar 

  27. Constantinescu A, Han D, Packer L. Vitamin E recycling in human erythrocyte membranes.J Biol Chem. 1993;268:10906–10913.

    PubMed  CAS  Google Scholar 

  28. Hicks JJ, Montes-Cortes DH, Cruz-Dominguez MP, Medina-Santillan R, Olivares-Corichi IM. Antioxidants decrease reperfusion induced arrhythmias in myocardial infarction with ST-elevation.Front Biosci. 2007;12:2029–2037.

    Article  PubMed  CAS  Google Scholar 

  29. Burkitt MJ, Duncan J. Effects of trans-resveratrol on copper-dependent hydroxyl-radical formation and DNA damage: evidence for hydroxyl radical scavenging and a novel, glutathione-sparing mechanism of action.Arch Biochem Biophys. 2000;381:253–263.

    Article  PubMed  CAS  Google Scholar 

  30. Sierra Vargas MP, Guzmán-Grenfell AM, Olivares-Corichi IM, Torres-Ramos YD, Hicks JJ. Participation of the reactive oxygen species in pulmonary illnesses [in Spanish].Rev Inst Nal Enf Resp Mex. 2004;17:135–148.

    Google Scholar 

  31. Grattagliano I, Vendemiale G, Boscia F, Micelli-Ferrari T, Cardia L, Altomare E. Oxidative retinal products and ocular damages in diabetic patients.Free Radic Biol Med. 1998;25:369–372.

    Article  PubMed  CAS  Google Scholar 

  32. Yokoo S, Furumoto K, Hiyama E, Miwa N. Slow-down of age-dependent telomere shortening is executed in human skin keratinocytes by hormesis-like effects of trace hydrogen peroxide or by anti-oxidative effects of pro-vitamin C in common concurrently with reduction of intracellular oxidative stress.J Cell Biochem. 2004;93:588–597.

    Article  PubMed  CAS  Google Scholar 

  33. McBride JM, Kraemer WJ, Tripplet-McBride T, Sebastianelli W. Effect of resistance exercise on free radical production.Med Sci Sports Exerc. 1998;30:67–72.

    PubMed  CAS  Google Scholar 

  34. Aguilo A, Tauler P, Fuentespina E, Tur JA, Córdoba A, Pons A. Antioxidant response to oxidative stress induced by exhaustive exercise.Physiol Behav. 2005;84:1–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Hicks MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lara-Padilla, E., Kormanovski, A., Grave, P.A. et al. Increased antioxidant capacity in healthy volunteers taking a mixture of oral antioxidants versus vitamin C or E supplementation. Adv Therapy 24, 50–59 (2007). https://doi.org/10.1007/BF02849992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02849992

Keywords

Navigation