Skip to main content
Log in

Oxygen isotope fractionation in TiO2 polymorphs and application to geothermometry of eclogites

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

Oxygen isotope fractionation in TiO2 polymorphs has been calculated by the modified increment method. The results suggest that rutile is enriched in18O relative to brookite but depleted in18O relative to anatase. Due to the same crystal structure, oxygen isotope partitioning in the TiO2 polymorphs is determined by the cation-oxygen interatomic distances. The theoretical calibrations involving rutile are in fair agreement with known experimental measurements and empirical estimates. Application of the theoretical quartz-rutile calibration to geothermometry of natural eclogite assemblages indicates the preservation of isotopic equilibrium at high temperatures. The isotopic temperatures calculated are only slightly lower than the non-isotopic temperatures, indicating the slow rates of exchange for oxygen diffusion in rutile. The kinetics of exchange for oxygen diffusion in rutile is accordingly estimated by reconciling the differences between the isotopic and the non-isotopic temperatures. The rates of exchange for oxygen diffusion in rutile should be smaller than those for hornblende, but may be equal to or greater than those for diopside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addy, S. K. and G. D. Garlick, 1974, Oxygen isotope fractionation between rutile and water: Contrib. Mineral. Petrol., v. 45, p. 119–121.

    Article  Google Scholar 

  • Agrinier, P., 1991, The natural calibration of18O /16O geothermometers: application to the quartz-rutile mineral pair: Chem. Geol., v. 91, p. 49–64.

    Article  Google Scholar 

  • Agrinier, P., M. Javoy, D. C. Smith, and F. Pineau, 1985, Carbon and oxygen isotopes in eclogites, amphibolites, veins and marbles from the western Gneiss Region, Norway: Chem. Geol., v.52, p. 145–162.

    Google Scholar 

  • Berry, L. G., B. Mason, and R. V. Dietrich, 1983, Mineralogy: Concepts, Descriptions and Determinations: San Francisco, W. H. Freeman and Co., 561p.

    Google Scholar 

  • Bigeleisen, J., 1961, Statistical mechanics of isotope effects on the thermodynamic properties of condensed systems: J. Chem. Phys., v. 34, p. 1485–1593.

    Article  Google Scholar 

  • Bigeleisen, J. and M. G. Mayer, 1947, Calculation of equilibrium constants for isotopic exchange reactions: J. Chem. Phys., v. 15, p. 261–267.

    Article  Google Scholar 

  • Bird, M., F. J. Longstaffe, and W. S. Fyfe, 1993, Oxygen-isotope fractionation in titanium-oxide minerals at low temperature: Geochim. Cosmochim. Acta, v. 57, p. 3083–3091.

    Article  Google Scholar 

  • Bottinga, Y. and M. Javoy, 1975, Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks: Rev. Geophys. Space Phys., v. 13, p. 401–418.

    Article  Google Scholar 

  • Chiba, H., T. Chacko, R. N. Clayton, and J. R. Goldsmith, 1989, Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry: Geochim. Cosmochim. Acta, v. 53, p. 2985–2995.

    Article  Google Scholar 

  • Cole, D. R., H. Ohmoto, and A. C. Lasaga, 1983, Isotopic exchange in mineral-fluid systems, I. Theoretical evaluation of oxygen isotopic exchange accompanying surface reaction and diffusion: Geochim. Cosmochim. Acta, v. 47, p. 1681–1693.

    Article  Google Scholar 

  • Desmons, J. and J. R. O’Neil, 1978, Oxygen and hydrogen isotope composition of eclogites and associated rocks from the eastern Sesia Zone (western Alps, Italy): Contrib. Mineral. Petrol., v. 67, p. 79–85.

    Article  Google Scholar 

  • Eiler, J. M., J. W. Valley, and L. P. Baumgartner, 1993, A new look at stable isotope thermometry: Geochim. Cosmochim. Acta, v. 57, p. 2571–2583.

    Article  Google Scholar 

  • Elphick, S. C. and C. M. Graham. 1988, The effect of hydrogen on oxygen diffusion in quartz: evidence for fast proton transients: Nature, v. 335, p. 243–245.

    Article  Google Scholar 

  • Farver, J. R., 1989, Oxygen self-diffusion in diopside with application to cooling rate determination: Earth Planet. Sci. Lett., v. 92, p. 386–396.

    Article  Google Scholar 

  • Farver, J. R. and B. J. Giletti, 1985, Oxygen diffusion in amphiboles: Geochim. Cosmochim. Acta, v. 49, p. 1403–1411.

    Article  Google Scholar 

  • Farver, J. R. and R. A. Yund, 1990, The effect of hydrogen, oxygen, and water fugacity on oxygen diffusion in alkali feldspar: Geochim. Cosmochim. Acta, v. 54, p. 2953–2964.

    Article  Google Scholar 

  • Fortier, S. M. and B. J. Giletti, 1991, Volume self-diffusion of oxygen in biotite, muscovite, and phlogopite micas: Geochim. Cosmochim. Acta, v. 55, p. 1319–1330.

    Article  Google Scholar 

  • Freer, R. and P. F. Dennis, 1982, Oxygen diffusion studies, I. A preliminary ion microprobe investigation of oxygen diffusion in some rock-forming minerals: Mineral. Mag., v. 45, p. 179–192.

    Article  Google Scholar 

  • Garlick, G. D., 1966, Oxygen isotope fractionation in igneous rocks: Earth Planet. Sci. Lett., v. 1, p. 361–368.

    Article  Google Scholar 

  • Giletti, B. J., 1985, The nature of oxygen transport within minerals in the presence of hydrothermal water and the role of diffusion: Chem. Geol. v. 53, p. 197–206.

    Article  Google Scholar 

  • Giletti, B. J., 1986, Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks: Earth Planet. Sci. Lett., v. 77, p. 218–228.

    Article  Google Scholar 

  • Giletti, B. J. and R. A. Yund, 1984, Oxygen diffusion in quartz: J. Geophys. Res., v. 89, p. 4039–4046.

    Article  Google Scholar 

  • Giletti, B. J. and K. C. Hess, 1988, Oxygen diffusion in magnetite: Earth Planet. Sci. Lett., v. 89, p. 115–122.

    Article  Google Scholar 

  • Giletti, B.J., M. P. Semet, and R. A. Yund, 1978, Studies in diffusion, III. Oxygen in feldspars, and ion microprobe determination: Geochim. Cosmochim. Acta, v.42, p. 45–57.

    Article  Google Scholar 

  • Javoy, M, 1977, Stable isotopes and geothermometry: J. Geol. Soc. (London), v. 133, p. 609–636.

    Article  Google Scholar 

  • Jenkin, G. R. T., C. Link later, and A. E. Fallick, 1991, Modeling of mineral δ18O values in an igneous aureole: closed-system model predicts apparent open-system δ18O values: Geology, v. 19, p. 1185–1188.

    Article  Google Scholar 

  • Kawabe, I., 1978, Calculation of oxygen isotope fractionation in quartz-water system with special reference to the low temperature fractionation: Geochim. Cosmochim. Acta, v. 42, p. 613–621.

    Article  Google Scholar 

  • Kieffer, S. W., 1982, Thermodynamics and lattice vibration of minerals: 5. application to phase equilibria, isotopic fractionation, and high pressure thermodynamic properties: Rev. Geophys. Space Phys., v. 20, p. 827–849.

    Article  Google Scholar 

  • Matthews, A. and M. Schliestedt, 1984, Evolution of the blueschist and greenschist facies rocks of Sifnos, Cyclades, Greece: a stable isotope study of subduction-related metamorphism: Contrib. Mineral. Petrol., v. 88, p. 150–163.

    Article  Google Scholar 

  • Matthews, A., R. D. Beckinsale, and J. J. Durham, 1979, Oxygen isotope fractionation between rutile and water and geothermometry of metamorphic eclogites: Mineral. Mag., v. 43, p. 405–413.

    Article  Google Scholar 

  • Marthews, A., J. R. Goldsmith, and R. N. Clayton, 1983, On the mechanism and kinetics of oxygen isotope exchange in quartz and feldspars at elevated temperatures and pressures: Geol. Soc. Am. Bull., v. 94, p. 396–412.

    Article  Google Scholar 

  • O’Neil, J. R., 1986, Theoretical and experimental aspects of isotopic fractionation: Rev. Mineral., v. 16, p. 1–40.

    Google Scholar 

  • O’Neil, J. R. and R. N. Clayton. 1964, Oxygen isotope geothermometry, in H. Craig, S. L. Miller and G. J. Wasserburg, eds., Isotopic and Cosmic Chemistry: Amsterdam, North-Holland Publ. Co., p. 157–168.

    Google Scholar 

  • Richet, P., Y. Bottinga, and M. Javoy, 1977, A review of hydrogen, carbon nitrogen, oxygen, sulfur and chloride stable isotope fractionation among gaseous molecules: Ann. Rev. Earth Planet. Sci., v. 5, p. 65–110.

    Article  Google Scholar 

  • Richter, R. and S. Hoernes, 1988, The application of the increment method in comparison with experimentally derived and calculated 0-isotope fractionations: Chem. Erde, v. 48, p. 1–18.

    Google Scholar 

  • RumbleIII D., 1982, Stable isotope fractionation during metamorphic volatilization reactions, in J. M. Ferry, ed., Characterization of Metamorphism through Mineral Equilibria: Reviews in Mineralogy, v. 10, p. 153–206.

  • Schütze, H., 1980, Der Isotopenindex—eine Inkrementenmethode zur näherungsweisen Berechnung von Isotopenaustauschgleichgewichten zwischen kristallinen substanzen: Chem. Erde, v. 39, p. 321–334.

    Google Scholar 

  • Sharp, Z. D., J. R. O’Neil, and E. J. Essene, 1988, Oxygen isotope variation in granulite-grade iron formations: constraints on oxygen diffusion and retrograde isotope exchange: Contrib. Mineral. Petrol., v. 98, p. 490–501.

    Article  Google Scholar 

  • Shieh, Y. -N., 1974, Mobility of oxygen isotopes during metamorphism, in A. W. Hofmann, B. J. Giletti, H. S. Yorder Jr. and R. A. Yund, eds., Geochemical Transport and Kinetics: Carnegie Inst. Washington Publication, v. 634, p. 325–335.

  • Smyth, J. R. and D. L. Bish, 1988, Crystal Structure and Cation Sites of the Rock-forming Minerals: Boston, Allen and Unwin, 332p.

    Google Scholar 

  • Stern, M. J., W. Spindel, and E. U. Monse, 1968, Temperature dependence of isotope effects: J. Chem. Phys., v. 48, p. 2908–2919.

    Article  Google Scholar 

  • Taylor Jr., H. P. and S. Epstein, 1962, Relationship between18O /16O ratios in coexisting minerals of igneous and metamorphic rocks, Part 2, application to petrological problems: Geol. Soc. Am. Bull., v. 73, p. 675–694.

    Article  Google Scholar 

  • Urey, H. C., 1974, The thermodynamic properties of isotopic substances: J. Chem. Soc. (London), p. 562–581.

  • Valley, J. W., 1986, Stable isotope geochemistry of metamorphic rocks, in J. W. Valley, H. P. Taylor Jr. and J. R. O’Neil, eds., Stable Isotopes in High Temperature Geological Processes: Reviews in Mineralogy, v. 16, p. 445–490.

  • Vogel, D. E. and G. D. Garkick, 1970, Oxygen-isotope ratios in metamorphic eclogites: Contrib. Mineral. Petrol., v. 28, p. 183–191.

    Article  Google Scholar 

  • Yund, R. A. and T. F. Anderson, 1978, Oxygen isotope exchange between feldspar and fluid as a function of fluid pressure: Geochim. Cosmochim. Acta, v. 42, p. 235–239.

    Article  Google Scholar 

  • Zheng, Y. -F., 1992, Oxygen isotope fractionation in wolframite: Eur. J. Mineral., v. 4, p. 1331–1335.

    Google Scholar 

  • Zheng Y. -F., 1993a, Oxygen isotope fractionation in SiO2 and Al2SiO5 polymorphs: effect of crystal structure: Eur. J. Mineral., v. 5, p. 651–658.

    Google Scholar 

  • Zheng Y. -F., 1993b, Calculation of oxygen isotope fractionation in anhydrous silicate minerals: Geochim. Cosmochim. Acta, v. 57, p. 1079–1091.

    Article  Google Scholar 

  • Zheng Y. -F., 1993b, Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates: Earth Planet. Sci. lett., v. 120, p. 247–263.

    Article  Google Scholar 

  • Zheng Y. -F. and K. Simon, 1991, Oxygen isotope fractionation in hematite and magnetite: A theoretical calculation and application to geothermometry of metamorphic iron-formations: Eur. J. Mineral., v. 3, p. 877–886.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Chinese Academy of Sciences within the framework of the project “Stable Isotope Geochemistry of the Earth’s Crust and Mantle”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yongfei, Z. Oxygen isotope fractionation in TiO2 polymorphs and application to geothermometry of eclogites. Chin. J. of Geochem. 14, 1–12 (1995). https://doi.org/10.1007/BF02840378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02840378

Key words

Navigation