Skip to main content
Log in

Monoclonal antibodies reactive with epitopes restricted to glial fibrillary acidic proteins of several species

  • Original Articles
  • Published:
Neurochemical Pathology

Abstract

The highly reproducible histochemical localization of glial fibrillary acidic protein (GFAP)‡ qualifies it as an important marker of astrocytes in both research and clinical applications. The primary objective of this study was to produce monoclonal antibodies having the advantage of invariant specificity, affinity, and titer to GFAP-specific epitopes of wide species distribution. We report here the characterization of four monoclonal antibodies that recognize the same or spatially close epitopes specific to GFAP. The epitope(s) detected has been phylogenetically conserved; human, bovine, ovine, canine, porcine, rabbit, guinea pig, rat, murine, and chicken brain homogenates all specifically absorb monoclonal antibody activity. Of importance to the routine application of these new anti-GFAP monoclonal antibodies is the demonstration here of the stability of the antigen-antibody interaction in normal, reactive, and neoplastic astrocytes of both rat and human origing following various methods of fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BR:

binding ratio FCS, fetal calf serum

GFAP:

glial fibrillary acidic protein

PAP:

peroxidase-antiperoxidase assay

RIA:

radioimmunoassay

References

  • M. Albrechtsen, A. C. von Gerstenberg, and E. Bock (1984) Mouse monoclonal antibodies reacting with human brain glial fibrillary acidic protein.J. Neurochem. 42, 86–93.

    Article  PubMed  CAS  Google Scholar 

  • D. D. Bigner, S. H. Bigner, J. Ponten, B. Westermark, M. S. Mahaley, E. Ruoslahti, H. Herschman, L. F. Eng, and C. J. Wikstrand (1981) Heterogeneity of genotypic and phenotypic characteristics of 15 permanent cell lines derived from human gliomas.J. Neuropathol. Exp. Neurol. 40, 201–229.

    Article  PubMed  CAS  Google Scholar 

  • F-C. Chiu, W. T. Norton, and K. L. Field (1981). The cytoskeleton of primary astrocytes in culture contains glial fibrillary acidic protein and the fibroblast-type filament protein, vimentin.J. Neurochem. 37, 147–155.

    Article  PubMed  CAS  Google Scholar 

  • V. P. Collins (1984) Monoclonal antibodies to glial fibrillary acidic protein in the cytologic diagnosis of brain tumors.Acta Cytol. 28, 401–406.

    PubMed  CAS  Google Scholar 

  • D. Dahl and A. Bignami (1976) Immunogenic properties of the glial fibrillary acidic protein.Brain Res. 116, 150–157.

    Article  PubMed  CAS  Google Scholar 

  • S. J. DeArmond, L. F. Eng, L. F. Rubinstein (1980) The application of glial fibrillary acidic (GFA) protein. Immunocytochemistry in neuro-oncology.Pathol. Res. Pract. 168, 374–394.

    CAS  Google Scholar 

  • E. Debus, K. Weber, and M. Osborn (1983) Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides.Differentiation 25, 193–204.

    Article  PubMed  CAS  Google Scholar 

  • L. F. Eng and S. J. DeArmond (1982) Immunocytochemical studies of astrocytes in normal development and disease, inAdvances in Cellular Neurobiology (S. Federoff and L. Hertz, eds.) pp. 145–171. Academic Press, New York.

    Google Scholar 

  • L. F. Eng and S. J. DeArmond (1983) Immunohistochemistry of the glial fibrillary acidic protein, inProgress in Neuropathology, H. M. Zimmerman, ed.), pp. 19–39. Raven Press, New York.

    Google Scholar 

  • L. F. Eng and L. J. Rubinstein (1978) Contribution of immunohistochemistry to diagnosis problems of human cerebral tumors.J. Histochem. Cytochem. 26, 513–522.

    PubMed  CAS  Google Scholar 

  • N. Geisler and K. Weber (1981) Comparison of the proteins of two immunologically distinct intermediate-sized filaments by amino and acid sequence analysis: desmin and vimentin.Proc. Natl. Acad. Sci. 78, 4120–4123.

    Article  PubMed  CAS  Google Scholar 

  • N. Geisler and K. Weber (1982) The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins,EMBO J. 1, 1649.

    PubMed  CAS  Google Scholar 

  • N. Geisler, U. Plessman, and K. Weber (1982) Related sequences in neurofilaments and non-neural intermediate filaments.Nature 296, 448–450.

    Article  PubMed  CAS  Google Scholar 

  • J. Gheuens, E. de Schutter, M. Noppe, A. Lowenthal (1984) Identification of several forms of the glial fibrillary acidic protein, or α-albumin, by a specific monoclonal antibody.J. Neurochem. 43, 964–970.

    Article  PubMed  CAS  Google Scholar 

  • A. M. Gown and A. M. Vogel (1982) Monoclonal antibodies to intermediate filament proteins of human cells. Unique and cross-reacting antibodies.J. Cell Biol. 95, 414–424.

    Article  PubMed  CAS  Google Scholar 

  • F. C. Greenwood, W. M. Hunter, and J. S. Glover (1963) The preparation of131I-labeled human growth hormone of high specific radioactivity.Biochem. J. 89, 114–120.

    PubMed  CAS  Google Scholar 

  • S. M. Hsu, L. Raine, and H. Fanger (1981) The use of avidin-biotin-peroxidase comples (ABC) in immunoperoxidase techniques—a comparison between ABC and unlabeled antibody-PAP procedures.J. Histochem. Cytochem. 29, 577–583.

    PubMed  CAS  Google Scholar 

  • J. F. Kearney, A. Radbruch, A. Liesegang, and J. Rajewsky (1979) A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody secreting hybrid cell lines.J. Immunol. 123, 4, 1548–1550.

    PubMed  CAS  Google Scholar 

  • E. Kedar, M. Ortiz de Landauzuri and B. Bonavida (1974) Separation of nonadherent, T-cells and adherent, non-T cells.J. Immunol. 112, 1231.

    PubMed  CAS  Google Scholar 

  • V. M.-Y Lee, C. D. Page, H.-L. Wu, and W. W. Schlaepfer (1984) Monoclonal antibodies to gel-excised glial filament protein and their reactivities with other intermediate filament proteins.J. Neurochem. 42, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • R. Liem (1982) Simultaneous separation and purification of neurofilament and glial filament proteins from brain.J. Neurochem 38, 142–150.

    Article  PubMed  CAS  Google Scholar 

  • H. B. Marsden, S. Kumar, J. Kahn, and B. J. Anderton (1983) A study of glial fibrillary acidic protein (GFAP) in childhood brain tumors.Int. J. Cancer 31, 439–455.

    Article  PubMed  CAS  Google Scholar 

  • M. Osborn and K. Weber (1983) Tumor diagnosis by intermediate filament typing.Lab. Invest. 48, 372–394.

    PubMed  CAS  Google Scholar 

  • M. Osborn, M. Ludwig-Festl, K. Weber, A. Bignami, D. Dahl, and K. Bayreuther (1981) Expression of glial and vimentin-type intermediate filaments in cultures derived from human glial material.Differentiation 19, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • B. Pasquier, A. Lachard, D. Pasquier, P. Couderc, B. Delpech, and M.-N. Courel (1983) Proteine gliofibrillaire acide (GFA) et tumeurs nerveuses centrales.Ann. Pathol. 3, 203–211.

    PubMed  CAS  Google Scholar 

  • A. Paetau, J. Virtanen, S. Stenman, P. Kurki, E. Linder, A. Vaheri, B. Westermark, D. Dahl, and M. Hattia (1979) Glial fibrillary acidic protein and intermediate filaments in human glioma cells.Acta Neuropath. (Berl.)47, 71–74.

    Article  CAS  Google Scholar 

  • R. M. Pruss, R. Mirsky, M. C. Raff, R. Thorpe, A. J. Dowding, and B. H. Anderton (1981) All classes of intermediate filaments share a common antigenic determinant defined by monoclonal antibody.Cell 27, 419–428.

    Article  PubMed  CAS  Google Scholar 

  • G. Shaw, M. Osborn, and K. Weber (1981) An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain.Eur. J. Cell Biol. 26, 68–82.

    PubMed  CAS  Google Scholar 

  • L. A. Sternberger (1979)Immunocytochemistry, 2nd edition, pp. 104–169. Wiley, New York.

    Google Scholar 

  • J. L. Trojanowski and V. M.-Y. Lee (1983) Monoclonal and polyclonal antibodies against neural antigens: Diagnostic applications for studies of central and peripheral nervous system tumors.Human Path. 14, 281–285.

    Article  CAS  Google Scholar 

  • C. J. Wikstrand and D. D. Bigner (1979) Surface antigens of human glioma cells shared with normal adult and fetal brain.Cancer Res. 39, 3235–3243.

    PubMed  CAS  Google Scholar 

  • C. J. Wikstrand and D. D. Bigner (1982) Expression of human fetal brain antigens by human tumors of neuroectodermal origin as defined by monoclonal antibodies.Cancer Res. 42, 267–275.

    PubMed  CAS  Google Scholar 

  • C. J. Wikstrand and D. D. Bigner (1985) Use of monoclonal antibodies in neurobiology and neurooncology, inMonoclonal Antibodies in Cancer (Sell, S. and Reisfeld R. A., eds.) pp. 365–397. Humana Press, Clifton, New Jersey.

    Google Scholar 

  • C. J. Wikstrand, M. A. Bourdon, C. N. Pegram, and D. D. Bigner (1982) Human fetal brain antigen expression common to tumors of neuroectodermal tissue origin: gliomas, neuroblastomas, and melanomas.J. Neuroimmunol. 3, 43–62.

    Article  PubMed  CAS  Google Scholar 

  • S. H. Yen and K. L. Fields (1981) Antibodies to neurofilaments, glial filaments and fibroblast intermediate filament proteins bind to different cell types of the nervous system.J. Cell. Biol. 88, 115–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pegram, C.N., Eng, L.F., Wikstrand, C.J. et al. Monoclonal antibodies reactive with epitopes restricted to glial fibrillary acidic proteins of several species. Neurochemical Pathology 3, 119–138 (1983). https://doi.org/10.1007/BF02834285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02834285

Index Entries

Navigation