Skip to main content
Log in

Abstract

We study some arithmetic properties of the Ramanujan function τ(n), such as the largest prime divisorP (τ(n)) and the number of distinct prime divisors ω (τ (n)) of τ(n) for various sequences ofn. In particular, we show thatP(τ(n)) ≥ (logn)33/31+o(1) for infinitely many n, and

$$P(\tau )(p)\tau (p^2 )\tau (p^3 )) > (1 + o(1))\frac{{\log \log p\log \log \log p}}{{\log \log \log \log p}}$$

for every primep with τ(ρ) ≠ 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baczkowski D, Master Thesis (Miami Univ., Ohio, 2004)

    Google Scholar 

  2. Bilu Y, Hanrot G and Voutier P M, Existence of primitive divisors of Lucas and Lehmer numbers, with an appendix by M Mignotte,J. Reine Angew. Math. 539 (2001) 75–122

    MATH  MathSciNet  Google Scholar 

  3. Evertse J-H, On equations inS-units and the Thue-Mahler equation,Invent. Math. 75 (1984) 561–584

    Article  MATH  MathSciNet  Google Scholar 

  4. Hardy G H and Wright E M, An introduction to the theory of numbers (Oxford Univ. Press, Oxford, 1979)

    MATH  Google Scholar 

  5. Hildebrand A and Tenenbaum G, Integers without large prime factors,J. de Théorie des Nombres de Bordeaux 5 (1993) 411–484

    MATH  MathSciNet  Google Scholar 

  6. Luca F, Equations involving arithmetic functions of factorials,Divulg. Math. 8 (1) (2000) 15–23

    MATH  MathSciNet  Google Scholar 

  7. Murty M R, The Ramanujan τ function, Ramanujan revisited,Proc. Illinois Conference on Ramanujan (1988) 269–288

  8. Murty M R and Murty V K, Prime divisors of Fourier coefficients of modular forms,Duke Math. J. 51 (1985) 521–533

    Google Scholar 

  9. Murty M R, Murty V K and Shorey T N, Odd values of the Ramanujan τ-function,Bull. Soc. Math. France 115 (1987) 391–395

    MATH  MathSciNet  Google Scholar 

  10. Murty M R and Wong S, TheABC conjecture and prime divisors of the Lucas and Lehmer sequences, Number Theory for the Millennium, vol. III (MA: A. K. Peters, Natick) (2002) 43–54

    Google Scholar 

  11. Serre J P, Quelques applications du théorème de densité de Chebotarev,Publ. Math., Inst. Hautes Étud. Sci. 54 (1981) 123–201

    Article  MATH  Google Scholar 

  12. Shorey T N and Tijdeman R, Exponential diophantine equations (Cambridge: Cambridge Univ. Press) (1986)

    MATH  Google Scholar 

  13. Shorey T N, Ramanujan and binary recursive sequences,J. Indian Math. Soc. 52 (1987) 147–157

    MATH  MathSciNet  Google Scholar 

  14. Stewart C L, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, III,J. London Math. Soc. 28 (1983) 211–217

    Article  MATH  MathSciNet  Google Scholar 

  15. Stewart C L and Yu K R, On theabc conjecture, II,Duke Math. J. 108 (2001) 169–181

    Article  MATH  MathSciNet  Google Scholar 

  16. Tenenbaum G, Introduction to analytic and probabilistic number theory (Cambridge: Cambridge Univ. Press) (1995)

    Google Scholar 

  17. Yu K,p-Adic logarithmic forms and group varieties, II,Acta Arith. 89 (1999) 337–378

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Luca.

Additional information

Dedicated to T N Shorey on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luca, F., Shparlinski, I.E. Arithmetic properties of the Ramanujan function. Proc. Indian Acad. Sci. (Math. Sci.) 116, 1–8 (2006). https://doi.org/10.1007/BF02829735

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829735

Keywords

Navigation