Skip to main content
Log in

Regulation of morphogenesis in plant tissue culture by ethylene

  • Developmental Biology/Morphogenesis
  • Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The gaseous phytohormone ethylene regulates many aspects of plant morphogenesis. Growth and development of cells culturedin vitro are largely dependent on the presence of phytohormones, including ethylene in the culture environment. Hence, modification of phytohormone composition and interaction in the nutrient medium has been the primary strategy to manipulate morphogenesisin vitro. Such studies have shown the importance of ethylene, as well as the inhibition of its synthesis or action, in growth and organized developmentin vitro, including xylogenesis, organogenesis, somatic embryogenesis, and androgenesis. More recently, mutants and transgenic plants have been used to elucidate the role of ethylene in various cellular and developmental processes. In this review, we concentrate on the more recent advances in the study of ethylene in plant morphogenesisin vitro. We also include information about the various chemical modulators of ethylene biosynthesis and action employed in plant tissue culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, F. B.; Morgan, P. W.; Saltveit, M. E. Ethylene in plant biology, 2nd ed. New York: Academic Press; 1992.

    Google Scholar 

  • Adams, D. O.; Yang, S. F. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76:170–174; 1979.

    PubMed  CAS  Google Scholar 

  • Adkins, S. W.; Kunanuvatchaidach, R.; Gray, S. J., et al. Effect of ethylene and culture environment on rice callus proliferation. J. Exp. Bot. 44:1829–1835; 1993.

    CAS  Google Scholar 

  • Apelbaum, A.; Burg, S. P. Altered cell microfibrillar orientation in ethylenetreatedPisum sativum stems. Plant Physiol. 48:648–652; 1971.

    PubMed  CAS  Google Scholar 

  • Apelbaum, A.; Burg, S. P. Effect of ethylene on cell division and deoxyribonucleic acid synthesis inPisum sativum. Plant Physiol. 50:117–124; 1972.

    PubMed  CAS  Google Scholar 

  • Auboiron, E.; Carron, M.-P.; Michaux-Ferrière, N. Influence of atmospheric gases, particularly ethylene, on somatic embryogenesis ofHevea brasiliensis. Plant Cell Tissue Organ Cult. 21:31–37; 1990.

    CAS  Google Scholar 

  • Babbar, S. B.; Gupta, S. C. Putative role of ethylene inDatura metel microspore embryogenesis. Physiol. Plant. 68:141–144; 1986.

    CAS  Google Scholar 

  • Barry, C. S.; Blume, B.; Bouzayne, M., et al. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family in tomato. Plant J. 9:525–535; 1996.

    PubMed  CAS  Google Scholar 

  • Beasley, C. A.; Eaks, I. L. Ethylene from alcohol lamps and natural gas burners: effects on cotton ovules culturedin vitro. In Vitro 15:263–269; 1979.

    CAS  Google Scholar 

  • Biddington, N. L. The influence of ethylene in plant tissue culture. Plant Growth Regul. 11:173–187; 1992.

    CAS  Google Scholar 

  • Biddington, N. L.; Robinson, H. T. Ethylene production during anther culture of Brussels sprouts (Brassica oleraceae var.gemmifera) and its relationship with factors that effect embryo production. Plant Cell Tissue Organ Cult. 25:169–177; 1991.

    CAS  Google Scholar 

  • Bleecker, A. B.; Estelle, M. A.; Somerville, C., et al. Insensitivity to ethylene conferred by a dominant mutation inArabidopsis thaliana. Science 241:1086–1089; 1988.

    PubMed  CAS  Google Scholar 

  • Bouriquet, M. R. Action de l'èthylène sur le bourgeonnement et la floraisonin vitro de fragments de racines d'endive. C. R. Acad. Sci. (Paris), Series D 275:33–34; 1972.

    CAS  Google Scholar 

  • Cambecèdes, J.; Duron, M.; Decourtye, L. Interacting effects of 2,3,5-triiodobenzoic acid, ACC, and silver nitrate on adventitious bud formation from leaf explants of the shrub honeysuckle,Lonicera nitida Wils. Maigrün. J. Plant Physiol. 140:557–561; 1992.

    Google Scholar 

  • Chi, G. L.; Barfield, D. G.; Sim, G. E., et al. Effect of AgNO3 and aminovinylglycine onin vitro shoot and root organogenesis from seedling explants of recalcitrantBrassica genotypes. Plant Cell Rep. 9:195–198; 1990.

    CAS  Google Scholar 

  • Chi, G. L.; Pua, E. C. Ethylene inhibitors enhanced de novo shoot regeneration from cotyledon explants ofBrassica campestris ssp.Chinensis (Chinese cabbage)in vitro. Plant Sci. 64:243–250; 1989.

    CAS  Google Scholar 

  • Cho, U. H.; Kasha, K. J. Ethylene production and embryogenesis from barley anthers. Plant Cell Rep. 8:415–417; 1989.

    CAS  Google Scholar 

  • Cho, U. H.; kasha, K. J. Relationship of senescence to androgenesis in barley (Hordeum vulgare L. cv.Klages). J. Plant Physiol. 139:299–302; 1992.

    CAS  Google Scholar 

  • Chraibi, K. M.; Latché, A.; Roustan, J.-P., et al. Stimulation of shoot regeneration from cotyledons ofHelianthus annuus by the ethylene inhibitors, silver and cobalt. Plant Cell Rep. 10:204–207; 1991.

    Google Scholar 

  • Coleman, W. K.; Huxter, T. J.; Reid, D. M., et al. Ethylene as an endogenous inhibitor of root regeneration in tomato leaf discs culturedin vitro. Physiol. Plant. 48:519–525; 1980.

    CAS  Google Scholar 

  • Constabel, F.; Kurz, W. G. W.; Chatson, K. B., et al. Partial synchrony in soybean cell suspension cultures induced by ethylene. Exp. Cell Res. 105:263–268; 1977.

    PubMed  CAS  Google Scholar 

  • Cornejo-Martin, M. J.; Mingo-Castel, A. M.; Primo-Millo, E. Organ redifferentiation in rice callus: effects of C2H4, CO2 and cytokinins. Z. Pflanzenphysiol. 94:117–123; 1979.

    CAS  Google Scholar 

  • Coumans, M.; Zhong, D. Doubled haploid sunflower (Helianthus annuus) plant production by androgenesis: fact or artifact? 2.In vitro isolated microspore culture. Plant Cell Tissue Organ Cult. 41:203–209; 1995.

    CAS  Google Scholar 

  • Dalton, C. C.; Street, H. E. The role of the gas phase in the greening and growth of illuminated cell suspension cultures of spinach (Spinacea oleracea L.) In Vitro 12:485–494; 1976.

    PubMed  CAS  Google Scholar 

  • De Block, M. Genotype-independent leaf disc transformation of potato (Solanum tuberosum) usingAgrobacterium tumefaciens. Theor. Appl. Genet. 76:767–774; 1988.

    Google Scholar 

  • Dimasi-Theriou, K.; Economou, A. S. Ethylene enhances shoot formation in cultures of the peach rootstock GF-677 (Prunus persica × P. amygdalus). Plant Cell Rep. 15:87–90; 1995.

    CAS  Google Scholar 

  • Dimasi-Theriou, K.; Economou, A. S.; Evangelos, M. S. Promotion of petunia (Petunia hybrida L.) regenerationin vitro by ethylene. Plant Cell Tissue Organ Cult. 32:219–225; 1993.

    CAS  Google Scholar 

  • Droux, M.; Ravanel, S.; Douce, R. Methionine biosynthesis in higher plants. 2. Purification and characterization of cystathionine betalyase from spinach chloroplasts. Arch. Biochem. Biophys. 316:585–595; 1995.

    PubMed  CAS  Google Scholar 

  • Dunwell, J. M. Anther culture inNicotiana tabacum: the role of the culture vessel atmosphere in pollen induction and growth. J. Exp. Bot. 30:419–428; 1979.

    Google Scholar 

  • Ecker, J. R. The ethylene signal transduction pathway in plants. Science 268:667–675; 1995.

    PubMed  CAS  Google Scholar 

  • Einset, J. W. Differential expression of antisense in regenerated tobacco plants transformed with an antisense version of a tomato ACC oxidase gene. Plant Cell Tissue Organ Cult. 46:137–141; 1996.

    CAS  Google Scholar 

  • Elmore, H. W.; Whittier, D. P. The role of ethylene in the induction of apogamous buds inPteridium gametophytes. Planta 111:85–90; 1973.

    CAS  Google Scholar 

  • Evans, J. M.; Batty, N. P. Ethylene precursors and antagonists increase embryogenesis ofHordeum vulgare L. anther culture. Plant Cell Rep. 13:676–678; 1994.

    CAS  Google Scholar 

  • Faria, J. L. C.; Segura, J. In vitro control of adventitious bud differentiation by inorganic medium components and silver thiosulfate in explants ofPassiflora edulis F.Flavicarpa. In Vitro Cell. Dev. Biol. 33P:209–212; 1997.

    Google Scholar 

  • Feirer, R. P.; Simon, P. W. Biochemical differences between carrot inbreds differing in plant regeneration potential. Plant Cell Rep. 10:152–155; 1991.

    CAS  Google Scholar 

  • Finlayson, S. A.; Foster, K. R.; Reid, D. M. Transport and metabolism of 1-aminocyclopropane-1-carboxylic acid in sunflower (Helianthus annuus L.) seedlings. Plant Physiol. 96:1360–1367; 1991.

    PubMed  CAS  Google Scholar 

  • Finlayson, S. A.; Reid, D. M. Influence of CO2 on ACC oxidase activity from roots of sunflower (Helianthus annuus) seedlings. Phytochemistry 35:847–851; 1994.

    CAS  Google Scholar 

  • Fujino, D. W.; Burger, D. W.; Yang, S. F., et al. Characterization of an ethylene overproducing mutant of tomato (Lycopersicon esculentum Mill. cultivar VFN8). Plant Physiol. 88:774–779; 1988.

    PubMed  CAS  Google Scholar 

  • Fukuda, H. Xylogenesis: limitation, progression and cell death. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:299–325; 1996.

    PubMed  CAS  Google Scholar 

  • Fukuda, H. Tracheary element differentiation. Plant Cell 9:1147–1156; 1997.

    PubMed  CAS  Google Scholar 

  • Fukuda, H.; Komamine, A. Cytodifferentiation. In: Vasil, I. K., ed. Cell culture and somatic cell genetics of plants. Vol. 2. New York: Academic Press; 1985:149–212.

    Google Scholar 

  • Gaspar, T.; Kevers, C.; Penel, C., et al. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol.-Plant 32:272–289; 1996.

    CAS  Google Scholar 

  • Goh, C. J.; Ng, S. K.; Lakshmanan, P., et al. The role of ethylene on direct shoot bud regeneration from mangosteen (Garcinia mangostana L.) leaves culturedin vivo. Plant Sci. 124:193–202; 1997.

    CAS  Google Scholar 

  • Gonzalez, A.; Arigita, L.; Majada, J., et al. Ethylene involvement in vitro organogenesis and plant growth ofPopulus tremula L. Plant Growth Regul. 22:1–6; 1997.

    CAS  Google Scholar 

  • Gonzalez, A.; Rodriguez, R.; Tames, R. S. Ethylene andin vitro rooting of hazelnut (Corylus avellana) cotyledons. Physiol. Plant. 81:227–233; 1991.

    CAS  Google Scholar 

  • Good, X.; Kellogg, J. A.; Wagoner, W., et al. Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol. Biol. 26:781–790; 1994.

    PubMed  CAS  Google Scholar 

  • Grossman, K.; Sanerbrey, E.; Jung, J. Influence of growth retardants and ethylene generating compounds on culture response of leaf explants from wheatTriticum aestivum L. J. Plant Physiol. 135:725–731; 1990.

    Google Scholar 

  • Guzman, P.; Ecker, J. R. Exploiting the triple response ofArabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523; 1990.

    PubMed  CAS  Google Scholar 

  • Hamilton, A. J.; Lycett, G. W.; Grierson, D. Antisense gene that inhibits the synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287; 1990.

    CAS  Google Scholar 

  • Hatanaka, T.; Sawabe, E.; Azuma, T., et al. The role of ethylene in somatic embryogenesis from leaf discs ofCoffea canephora. Plant Sci. 107:199–204; 1995.

    CAS  Google Scholar 

  • Hausman, J. F. Changes in peroxidase activity, auxin level and ethylene production during root formation by poplar shoots raised in vitro. Plant Growth Regul. 13:263–268; 1993.

    CAS  Google Scholar 

  • Huang, Y. F.; Chen, C. T.; Kao, C. H. Salicylic acid inhibits the biosynthesis of ethylene in detached rice leaves. Plant Growth Regul. 12:79–82; 1993.

    CAS  Google Scholar 

  • Hughes, K. W.In vitro ecology: exogenous factors affecting growth and morphogenesis in plant culture systems. Environ. Exp. Bot. 21:281–288; 1981.

    CAS  Google Scholar 

  • Hutchinson, M. J.; Murr, D.; Krishnaraj, S., et al. Does ethylene play a role in thidiazuron-regulated somatic embryogenesis of geranium (Pelargonium × hortorum Bailey) hypocotyl cultures? In Vitro Cell. Dev. Biol. 33P:136–141; 1997.

    Google Scholar 

  • Hutchinson, M. J.; Saxena, P. K. Acetylsalicylic acid enhances and synchronizes thidiazuron-induced somatic embryogenesis in geranium (Pelargonium × hortorum Bailey) tissue cultures. Plant Cell Rep. 15:512–515; 1996.

    CAS  Google Scholar 

  • Huxter, T. J.; Reid, D. M.; Thorpe, T. A. Ethylene production by tobacco (Nicotiana tabacum) callus. Physiol. Plant. 46:374–380; 1979.

    CAS  Google Scholar 

  • Huxter, T. J.; Thorpe, T. A.; Reid, D. M. Shoot initiation in light- and dark-grown tobacco callus: the role of ethylene. Physiol. Plant. 53:319–326; 1981.

    CAS  Google Scholar 

  • Hyde, C. L.; Phillips, G. C. Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annuum L.) via organogenesis. In Vitro Cell. Dev. Biol. 32P:72–80; 1996.

    Google Scholar 

  • Jackson, M. B.; Abbott, A. J.; Belcher, A. R., et al. Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann. Bot. 647:229–237; 1991.

    Google Scholar 

  • Joy, R. W.; IV; Kumar, P. P.; Thorpe, T. A. Long-term storage of somatic embryogenic white spruce tissue at ambient temperature. Plant Cell Tissue Organ Cult. 25:53–60; 1991.

    Google Scholar 

  • Kende, H.; Zeevaart, J. A. D. The five “classical” plant hormones. Plant Cell 9:1197–1210; 1997.

    PubMed  CAS  Google Scholar 

  • Kevers, C.; Boyer, N.; Courduroux, J.-C., et al. The influence of ethylene on proliferation and growth of rose shoot cultures. Plant Cell Tissue Organ Cult. 28:175–181; 1992.

    CAS  Google Scholar 

  • Kim, W. T.; Yang, S. F. Structure and expression of cDNAs encoding ACC oxidase homologs isolated from excised mung bean hypocotyls. Planta 194:223–229; 1994.

    PubMed  CAS  Google Scholar 

  • Klee, H. J.; Hayford, M. B.; Kretzmer, K. A., et al. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193; 1991.

    PubMed  CAS  Google Scholar 

  • Kneissl, M. L.; Deikman, J. The tomatoE8 gene influences ethylene biosynthesis in fruit but not in flowers. Plant Physiol. 112:537–547; 1996.

    PubMed  CAS  Google Scholar 

  • Knoester, M.; Linthorst, H. J. M.; Bol, J. F., et al. Modulation of stress-inducible ethylene biosynthesis by sense and antisense gene expression in tobacco. Plant Sci. 126:173–183; 1997.

    CAS  Google Scholar 

  • Kong, L.; Yeung, E. C. Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci. 104:71–80; 1994.

    CAS  Google Scholar 

  • Koritsas, V. M. Effect of ethylene and ethylene precursors on protein phosphorylation and xylogenesis in tuber explants ofHelianthus tuberosus (L). J. Exp. Bot. 39:375–386; 1988.

    CAS  Google Scholar 

  • Krikorian, A. D. Hormones in tissue culture and micropropagation. In: Davis, P. J., ed. Plant hormones. Dordrecht, Netherlands: Kluwer Academic Publishers; 1995:774–796.

    Google Scholar 

  • Kumar, P. P.; Joy, R. W., IV; Thorpe, T. A. Ethylene and carbon dioxide accumulation and growth of cell suspension cultures ofPicea glauca (white spruce). J. Plant Physiol. 135:592–596; 1989.

    Google Scholar 

  • Kumar, P. P.; Nathan, M. J.; Goh, C. J. Involvement of ethylene on growth and plant regeneration in callus cultures ofHeliconia psittacorum L. Plant Growth Regul. 19:145–151; 1996a.

    CAS  Google Scholar 

  • Kumar, P. P.; Rao, C. D.; Goh, C. J. Ethylene and CO2 affect direct shoot regeneration from the petiolar ends ofPaulownia kawakamii leaves culturedin vitro. Plant Growth Regul. 20:237–243; 1996b.

    CAS  Google Scholar 

  • Kumar, P. P.; Reid, D. M.; Thorpe, T. A. The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons ofPinus radiata in vitro. Physiol. Plant. 69:244–252; 1987.

    CAS  Google Scholar 

  • Kumar, P. P.; Thorpe, T. A. Alteration of growth and morphogenesis by endogenous ethylene and carbon dioxide in conifer tissue cultures. In: Dhavan, V., ed. Applications of biotechnology in forestry and horticulture. New York: Plenum Publishing; 1989:205–214.

    Google Scholar 

  • Kumar, P. P.; Thorpe, T. A. A setup for incubating plant cultures under continuous flow of gases. In Vitro Cell. Dev. Biol. 27P:43–44; 1991.

    Google Scholar 

  • Kwa, S. H.; Wee, Y. C.; Kumar, P. P. Role of ethylene in the production of sporophytes fromPlatycerium coronarium (Koenig) Desv. frond and rhizome pieces culturedin vitro. J. Plant Growth Regul. 14:183–189; 1995a.

    CAS  Google Scholar 

  • Kwa, S. H.; Wee, Y. C.; Lim, T. M., et al. IAA-induced apogamy inPlatycerium coronarium (Koenig) Desv. gametophytes culturedin vitro. Plant Cell Rep. 14:598–602; 1995b.

    CAS  Google Scholar 

  • Lakshmanan, P.; Lee, C. L.; Goh, C. J. An efficientin vitro method for mass propagation of a woody ornamentalIxora coccinea. Plant Cell Rep. 16:572–577; 1997b.

    CAS  Google Scholar 

  • Lakshmanan, P.; Ng, S. K.; Loh, C. S., et al. Auxin, cytokinin and ethylene differentially regulate specific developmental states associated with shoot bud morphogenesis in leaf tissues of mangosteen (Garcinia mangostana L.) culturedin vitro. Plant Cell Physiol. 38:59–64; 1997a.

    CAS  Google Scholar 

  • Lawton, K. A.; Potter, S. L.; Ukens, S., et al. Acquired resistance signal transduction inArabidopsis is ethylene independent. Plant Cell 6:581–588; 1994.

    PubMed  CAS  Google Scholar 

  • Lee, S. H.; Reid, D. M. The role of endogenous ethylene in the expansion ofHelianthus annuus leaves. Can. J. Bot. 75:501–508; 1997.

    PubMed  CAS  Google Scholar 

  • Lefebvre, M. R. Effets comparés d'un traitment anaérobie et de l'éthylène sur le bourgeonnement et la synthèse des pigments foliaires. C. R. Acad. Sci. (Paris), Series D 275:193–195; 1972.

    CAS  Google Scholar 

  • Lentini, Z.; Reyes, P.; Martinez, C. P., et al. Androgenesis of highly recalcitrant rice genotypes with maltose and silver nitrate. Plant Sci. 110:127–138; 1995.

    CAS  Google Scholar 

  • Leslie, C. A.; Romani, R. J. S. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol. 88:833–837; 1988.

    PubMed  CAS  Google Scholar 

  • Li, N.; Parsons, B. L.; Liu, D., et al. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol. Biol. 18:477–487; 1992.

    PubMed  CAS  Google Scholar 

  • Liu, J.; Mukherjee, I.; Reid, D. M. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings III. The role of ethylene. Physiol. Plant. 78:268–276; 1990.

    CAS  Google Scholar 

  • MacKenzie, I. A.; Street, H. E. Studies on the growth in culture of plant cells: VIII. The production of ethylene by suspension cultures ofAcer pseudoplatanus L. J. Exp. Bot. 21:824–834; 1970.

    CAS  Google Scholar 

  • Marino, G.; Berardi, G.; Ancherani, M. The effect of the type of closure on the gas composition of the headspace and the growth of GF677 peach x almond rootstock cell suspension culture. In Vitro Cell. Dev. Biol. 31P:207–210; 1995.

    Google Scholar 

  • McKeon, T. A.; Fernandez-Maculet, J. C.; Yang, S. F. Biosynthesis and metabolism of ethylene. In: Davis, P. J., ed. Plant hormones. Dordrecht, Netherlands: Kluwer Academic Publishers; 1995:118–139.

    Google Scholar 

  • Meijer, E. G. M.; Brown, D. C. W. Inhibition of somatic embryogenesis in tissue cultures ofMedicago sativa by aminoethoxyvinylglycine, amino-oxyacetic acid,2,4-dinitrophenol and salicylic acid at concentrations which do not inhibit ethylene biosynthesis and growth. J. Exp. Bot. 39:263–270; 1988.

    CAS  Google Scholar 

  • Mensualisodi, A.; Panizza, M.; Tognoni, F. Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttingsin vitro. Plant Growth Regul. 17:205–212; 1995.

    CAS  Google Scholar 

  • Miller, A. R.; Pengelly, W. L. Ethylene production by shoot forming and unorganized crown gall tumour tissue ofNicotiana andlycopersicon culturedin vitro. Planta 161:418–424; 1984.

    CAS  Google Scholar 

  • Miller, A. R.; Pengelly, W. L.; Roberts, L. W. Introduction of xylem differentiation inLactuca by ethylene. Plant Physiol. 75:1165–1166; 1984.

    PubMed  CAS  Google Scholar 

  • Miller, A. R.; Roberts, L. W. Regulation of tracheary elements differentiation by exogenous L-methionine in callus of soyabean cultures. Ann. Bot. 50:111–116; 1982.

    CAS  Google Scholar 

  • Miller, A. R.; Roberts, L. W. Ethylene biosynthesis and xylogenesis inLactuca pith explants culturedin vitro in the presence of auxin and cytokinin: the effect of ethylene precursors and inhibitors. J. Exp. Bot. 35:691–698; 1984.

    CAS  Google Scholar 

  • Mussell, H.; Earle, E.; Campbell, L., et al. Ethylene synthesis during protoplast formation from leaves ofAvena sativa. Plant Sci. 47:207–214; 1986.

    CAS  Google Scholar 

  • Nissen, P. Stimulation of somatic embryogenesis in carrot by ethylene—effects of modulators of ethylene biosynthesis and action. Physiol. Plant. 92:397–403; 1994.

    CAS  Google Scholar 

  • Nour, K. A.; Thorpe, T. A. The effect of the gaseous state on bud induction and shoot multiplicationin vitro in eastern white cedar. Physiol. Plant. 90:163–172; 1994.

    CAS  Google Scholar 

  • Oeller, P. W.; Lu, M. W.; Taylor, L. P., et al. Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437–439; 1991.

    PubMed  CAS  Google Scholar 

  • Palmer, C. E. Enhanced shoot regeneration fromBrassica campestris by silver nitrate. Plant Cell Rep. 11:541–545; 1992.

    CAS  Google Scholar 

  • Panizza, M.; Mensuali-Sodi, A.; Tognoni, F. Role of ethylene in axillary shoot proliferation of lavandin—interaction with benzyladenine and polyamines. J. Exp. Bot. 44:387–394; 1993.

    CAS  Google Scholar 

  • Patil, S. S.; Tang, C.-S. Inhibition of ethylene evolution in papaya pulp tissue by benzyl isothiocyanate. Plant Physiol. 53:585–588; 1974.

    PubMed  CAS  Google Scholar 

  • Perez-Bermudez, P.; Cornejo, M. J.; Segura, J. A morphogenic role for ethylene in hypocotyl cultures ofDigitalis obscura L. Plant Cell Rep. 4:188–190; 1985.

    CAS  Google Scholar 

  • Picton, S.; Barton, S. L.; Bouzayen, M., et al. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming-enzyme transgene. Plant J. 3:469–481; 1993.

    CAS  Google Scholar 

  • Pius, J.; George, L.; Eapen, S., et al. Enhanced plant regeneration in pearl millet (Pennisetum americanum) by ethylene inhibitors and cefotaxime. Plant Cell Tissue Organ Cult. 32:91–96; 1993.

    CAS  Google Scholar 

  • Pua, E. C. Cellular and molecular aspects of ethylene on plant morphogenesis of recalcitrantBrassica speciesin vitro. Bot. Bull. Acad. Sin. 34:191–209; 1993.

    CAS  Google Scholar 

  • Pua, E. C.; Lee, J. E. E. Enhanced de novo shoot morphogenesisin vitro by expression of antisense 1-aminocyclopropane-1-carboxylate oxidase gene in transgenic mustard plants. Planta 196:69–76; 1995.

    CAS  Google Scholar 

  • Pua, E. C.; Sim, G. E.; Chi, G. L., et al. Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. Longipinnatus Bailey)in vitro. Plant Cell Rep. 15:685–690; 1996.

    CAS  Google Scholar 

  • Radke, S. E.; Turner, J. C.; Facciotti, D. Transformation and regeneration fromBrassica rapa usingAgrobacterium tumefaciens. Plant Cell Rep. 11:499–505; 1992.

    Google Scholar 

  • Ragottama, K. G.; Maggio, A.; Narasimhan, M. L., et al. Tissue-specific activation of the osmotin gene by ABA, C2H4 and NaCl involves the same promoter region. Plant Mol. Biol. 34:393–402; 1997.

    Google Scholar 

  • Reid, D. M.; Sheffer, M. G.; Pierce, R. C., et al. Ethylene in the environment: scientific criteria for assessing its effects on environmental quality. National Research Council of Canada, NRCC No. 22496; 1985.

  • Reid, M. S. Ethylene in plant growth, development, and senescence. In: Davis, P. J., ed. Plant hormones. Dordrecht, Netherlands: Kluwer Academic Publishers; 1995:486–508.

    Google Scholar 

  • Rethmeier, N. O. M.; Jansen, C. E.; Snel, E. A. M., et al. Improvement of regeneration ofLycopersicon pennellii protoplasts by decreasing ethylene production. Plant Cell Rep. 9:539–543; 1991.

    CAS  Google Scholar 

  • Reynolds, T. L. A possible role for ethylene during IAA-induced pollen embryogenesis in anther culture ofSolanum carolinense L. Am. J. Bot. 74:967–969; 1987.

    CAS  Google Scholar 

  • Righetti, B.; Reid, D. M.; Thorpe, T. A. Growth and tissue senescence inPrunus avium shoots grownin vitro at different CO2/O2 ratios. In Vitro Cell. Dev. Biol. 32P:290–294; 1996.

    Google Scholar 

  • Roberts, L. W. Cytodifferentiation in plants: xylogenesis as a model system. London: Cambridge University Press; 1976.

    Google Scholar 

  • Roberts, L. W.; Baba, S. Exogenous methionine as a nutrient supplement for the induction of xylogenesis in lettuce pith explants. Ann. Bot. 42:375–379; 1978.

    CAS  Google Scholar 

  • Rost, T. L.; Jones, T.; Robbins, J. A. The role of ethylene in the control of cell division in cultured pea root tips: a mechanism to explain the excision effect. Protoplasma 130:68–72; 1986.

    CAS  Google Scholar 

  • Roustan, J.-P.; Latché, A.; Fallot, J. Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action: effect on arginine decarboxylase activity. Plant Sci. 67:89–95; 1990.

    CAS  Google Scholar 

  • Roustan, J.-P.; Latché, A.; Fallot, J.. Role of ethylene on induction and expression of carrot somatic embryogenesis—relationship with polyamine metabolism. Plant Sci. 103:223–229; 1995.

    Google Scholar 

  • Ryan, C. A. Oligosaccharide signalling in plants. Annu. Rev. Cell Biol. 3:295–317; 1987.

    PubMed  CAS  Google Scholar 

  • Sankhla, D.; Sankhla, N.; Davis, T. D. Promotion ofin vitro shoot formation from excised roots of silk tree (Albizzia julibrissin) by an oxime ether derivative and other ethylene inhibitors. Plant Cell Rep. 15:143–146; 1995.

    CAS  Google Scholar 

  • Sethi, U.; Basu, A.; Guha-Mukerjee, S. Control of cell proliferation and differentiation by modulators of ethylene biosynthesis and action inBrassica hypocotyl explants. Plant Sci. 69:225–229; 1990.

    CAS  Google Scholar 

  • Sevenier, R.; Coumans, M. Ethylene production and involvement during the first steps of durum wheat (Triticum durum) anther culture. Physiol. Plant. 96:146–151; 1996.

    CAS  Google Scholar 

  • Smulders, M. J. M.; Kemp, A.; Barendse, G. W. M., et al. Role of ethylene in auxin-induced flower bud formation in tobacco explants. Physiol. Plant. 78:167–172; 1990.

    CAS  Google Scholar 

  • Songstad, D. D.; Duncan, D. R.; Widholm, J. M. Effect of 1-aminocylopropane-1-carboxylic acid, silver nitrate and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Rep. 7:262–265; 1988.

    CAS  Google Scholar 

  • Steen, D. A.; Chadwick, A. V. Ethylene effect in pea stem tissue: evidence of microtubule mediation. Plant Physiol. 67:460–466; 1981.

    PubMed  CAS  Google Scholar 

  • Taylor, P. W. J.; Ko, H. L.; Fraser, T. A., et al. Effect of silver nitrate on sugarcane cell suspension growth, protoplast isolation, ethylene production and shoot regeneration from cell suspension cultures. J. Exp. Bot. 45:1163–1168; 1994.

    CAS  Google Scholar 

  • Teo, W.; Lakshmanan, P.; Kumar, P. P., et al. Direct shoot formation and plant regeneration from cotyledon explants of rapid-cyclingBrassica rapa. In Vitro Cell. Dev. Biol. 33P:288–292; 1997.

    Google Scholar 

  • Thengane, S. R.; Joshi, M. S.; Khuspe, S. S., et al. Anther culture inHelianthus annuus L., influence of genotype and culture conditions on embryo induction and plant regeneration. Plant Cell Rep. 13:222–226; 1994.

    CAS  Google Scholar 

  • Thomas, D. S.; Murashige, T. Volatile emissions of plant tissue cultures. 1. Identification of the major components. In Vitro 15:654–658; 1979.

    CAS  Google Scholar 

  • Thorpe, T. A. Morphogenesis and regeneration. In: Vasil, I. K.; Thorpe, T. A., eds. Plant cell and tissue culture. Dordrecht, Netherlands: Kluwer Academic Publishers; 1994:17–36.

    Google Scholar 

  • Tiainen, T. The role of ethylene and reducing agents on anther culture response of tetraploid potato (Solanum tuberosum L.). Plant Cell Rep. 10:604–607; 1992.

    CAS  Google Scholar 

  • Tisserat, B.; Murashige, T. Effects of ethephon, ethylene, and 2,4-dichlorophenoxyacetic acid on asexual embryogenesisin vitro. Plant Physiol. 60:437–439; 1977.

    PubMed  CAS  Google Scholar 

  • Tong, C. B.; Labavitch, J. M.; Yang, S. F. The induction of ethylene production from pear cell culture by cell wall fragments. Plant Physiol. 81:929–930; 1986.

    PubMed  CAS  Google Scholar 

  • Vain, P.; Flament, P.; Soudain, P. Role of ethylene in embryogenic callus initiation and regeneration inZea mays L. J. Plant Physiol. 135:537–540; 1989.

    Google Scholar 

  • Wang, C. Y. Use of ethylene biosynthesis inhibitors in horticulture. In: Reid, M. S., ed. Manipulation of ethylene responses in horticulture. Acta Hortic. 201:187–194; 1987.

    Google Scholar 

  • Warren Wilson, J.; Roberts, L. W.; Warren Wilson, P. M., et al. Stimulatory and inhibitory effects of sucrose concentration on xylogenesis in lettuce pith explants: possible mediation by ethylene biosynthesis. Ann. Bot. 73:65–73; 1994.

    Google Scholar 

  • Yang, S. F. Biosynthesis and action of ethylene. HortScience 20:41–45; 1985.

    CAS  Google Scholar 

  • Yip, W. K.; Moore, T.; Yang, S. F. Differential accumulation of transcripts for four tomato 1-aminocyclopropane-1-carboxylate synthase homologs under various conditions. Proc. Natl. Acad. Sci. USA 89:2475–2479; 1992.

    PubMed  CAS  Google Scholar 

  • Zobel, R. W.; Roberts, L. W. Effects of low concentrations of ethylene on cell division and cytodifferentiation in lettuce pith explants. Can. J. Bot. 56:987–990; 1978.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P.P., Lakshmanan, P. & Thorpe, T.A. Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell.Dev.Biol.-Plant 34, 94–103 (1998). https://doi.org/10.1007/BF02822771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02822771

Key words

Navigation