Skip to main content
Log in

Amorphous aluminum alloys—synthesis and stability

  • Overview
  • Amorphous Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent innovations in metallic glasses have led to new alloy classes that may be vitrified and a re-examination of the key alloying factors influencing glass formation and stability. The new alloy classes are usually at least ternary systems and often higher order that can be grouped into two general categories. In one case, large, bulk volumes may be slowly cooled to the glassy state, which signifies a nucleation controlled synthesis. The other important class is represented by aluminum- and iron-based glasses that can be synthesized by rapid solidification processes such as melt spinning. These glasses are often called marginal glass formers that are synthesized under growth-controlled kinetic conditions. Glasses in both alloy classes can also be synthesized by intense deformation of crystalline multilayer arrays. These developments represent a major level of microstructure control that has an impact on the structural performance and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Klement, R.H. Wilens, and P. Duwez,Nature, 187 (1960), p. 869.

    Article  CAS  Google Scholar 

  2. A. Inoue,Progr, Mat. Sci., 43 (1998), pp. 365–520.

    Article  CAS  Google Scholar 

  3. T. Egami and Y. Waseda,J. Non-Cryst. Solids, 64 (1984), pp. 113–134.

    Article  CAS  Google Scholar 

  4. A.L. Greer,Nature, 368 (1994), pp. 688–689.

    Article  Google Scholar 

  5. A.L. Greer,Mat. Sci. Engr., A304-306 (2001), pp. 68–72.

    Article  CAS  Google Scholar 

  6. A. Inoue,Mat. Trans. JIM, 36 (7) (1995), pp. 866–875.

    CAS  Google Scholar 

  7. A.R Tsai et al.,Acta Mater, 45 (4) (1997), pp. 1477–1487.

    Article  CAS  Google Scholar 

  8. W.L. Johnson,Mater. Sci. Forum, 225-227 (1996), pp. 35–49.

    CAS  Google Scholar 

  9. W.L. Johnson,Mat. Res. Soc. Symp. Proc., 554 (1999), pp. 311–339.

    CAS  Google Scholar 

  10. Y. He et al.,Acta Metal, 41 (2) (1993), pp. 337–343.

    Article  CAS  Google Scholar 

  11. H. Chen et al.,Nature, 367 (1994), pp. 541–543.

    Article  CAS  Google Scholar 

  12. W.J. Boettinger and J.H. Perepezko,Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, ed. H.H. Liebermann (Parsippany, NJ: Marcel Decker Inc., 1993), p. 17.

    Google Scholar 

  13. J.H. Perepezko and G. Wilde,Ber.Bunsenges. Phys. Chem., 102 (1998), pp. 1074–1082.

    CAS  Google Scholar 

  14. M.T. Clavaguera-Mora,Ber. Bunsenges. Phys. Chem., 102(1998), p. 1291–1297.

    CAS  Google Scholar 

  15. L. Battezzati et al.,Mat. Sci. and Eng., A179/180 (1994), p. 600–604.

    Google Scholar 

  16. Y. He, S.J. Poon, and G.J. Shiflet,Scripta Met, 22 (1988), pp. 1813–1816.

    Article  CAS  Google Scholar 

  17. D.R. Allen, J.C. Foley, and J.H. Perepezko,Acta Mater., 46(1998), pp. 431–440.

    Article  CAS  Google Scholar 

  18. K.F. Kelton, A.L. Greer, and C.V. Thompson,J. Chem. Phys., 79 (1983), pp. 6261–6276.

    Article  CAS  Google Scholar 

  19. A.L. Greer,Acta Metal, 30 (1982), pp. 171–192.

    Article  CAS  Google Scholar 

  20. C.A. Angell,Science, 267 (1995), pp. 1924–1935.

    Article  CAS  Google Scholar 

  21. H.W. Kui and D. Turnbull,Appl. Phys. Lett, 47 (8) (1985), pp. 796–797.

    Article  CAS  Google Scholar 

  22. A.J. Drehman and A.L. Greer,Acta Metall, 32 (1984), pp. 323–332.

    Article  CAS  Google Scholar 

  23. S. Omata et al.,Phil. Mag. A, 76 (1997), pp. 387–412.

    Article  CAS  Google Scholar 

  24. R.F. Cochrane, R Schumacher, and A.L. Greer,Mater. Sci. Engr, A133 (1991), pp. 367–370.

    Article  CAS  Google Scholar 

  25. R. Wu et al.,Mat. Res. Soc. Symp. Proc, 644 (2000), L4.7-L4.12.

    Google Scholar 

  26. A.K. Gangopadhyay, T.K. Croat, and K.F. Kelton,Acta Mater, 48 (2000), pp. 4035–4043.

    Article  CAS  Google Scholar 

  27. K. Hono, A. Inoue, and T. Sakurai,Appl. Phys. Lett, 58 (1991), pp. 2180–2182.

    Article  CAS  Google Scholar 

  28. K. Hono et al.,Acta Metall., 40 (1992), pp. 2137–2147.

    Article  CAS  Google Scholar 

  29. A.L. Greer,Defect Diff. Forum, 129/130 (1996), pp. 163–180.

    Google Scholar 

  30. K. Hono et al.,Mater. Trans. JIM, 36 (1995), pp. 909–917.

    CAS  Google Scholar 

  31. J.C. Foley, D.R. Allen, and J.H. Perepezko,Mater. Sci. Engr, A226–228 (1997), pp. 569–573.

    Article  Google Scholar 

  32. J.C. Foley, D.R. Allen, and J.H. Perepezko,Scripta Mat, 35 (1996), pp. 655–660.

    Article  CAS  Google Scholar 

  33. S.K. Das et al.,Mater. Sci. Engr, A304–306 (2001), pp. 159–165.

    Article  Google Scholar 

  34. Y. Yoshizawa, S. Oguma, and K. Yamauchi,J.Appl. Phys, 64 (10) (1988), pp. 6044–6046.

    Article  CAS  Google Scholar 

  35. J.D. Ayers et al.,Acta Mater, 46 (1998), pp. 1861–1874.

    Article  CAS  Google Scholar 

  36. T. Ohkubo et al.,Scripta Mater, 44 (2001), pp. 971–976.

    Article  CAS  Google Scholar 

  37. S.J. Hong, R.J. Warren, and B.S. Chun,Mater. Sci. Engr, A304–306 (2001), pp. 362–366.

    Article  Google Scholar 

  38. J.H. Perepezko, D.R. Allen, and J.C. Foley, U.S. patent 6,261,386 B1 (University of Wisconsin-Madison, Madison, WI, 17 July 2001).

    Google Scholar 

  39. R.S. Mishra et al.,Ultrafine Grained Materials (Warrendale, PA:TMS, 2000).

    Google Scholar 

  40. G. Wilde, H. Sieber, and J.H. Perepezko,Scripta Mater, 40(1999), pp. 779–783.

    Article  CAS  Google Scholar 

  41. A. Sagel, H. Sieber, and J.H. Perepezko,Acta Mater, 46 (1998), pp. 4233–4241.

    Article  CAS  Google Scholar 

  42. R.J. Hebert and J.H. Perepezko,Mater. Sci. Forum 386-388 (2002), pp. 21–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepezko, J.H., Hebert, R.J. Amorphous aluminum alloys—synthesis and stability. JOM 54, 34–39 (2002). https://doi.org/10.1007/BF02822618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02822618

Keywords

Navigation