Skip to main content
Log in

Morphology and immunohistochemistry of rat aortic grafts

  • Immunology
  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Allotransplantation (TPL) of the abdominal aortic segments of BN donors was performed in 32 Lewis recipients with or without cyclosporin A (CyA) immunosuppression, and the vascular changes were compared to those of 10 syngeneic grafts (Lewis→ Lewis) and to the autologous rat aortae. The vessels were examined 2, 3, 4 and 5 months post TPL by light microscopy, the thickness of intima and media was measured morphometrically and the cell infiltration of adventitia and intima was assessed semiquantitatively. Thirty-six aortae were examined by three-step enzyme immunohistochemistry (proof of selected differentiation, proliferation, cytoskeletal and connective tissue matrix antigens). The adventitia displayed an intense focal and scattered mononuclear cell infiltration: it was more discrete and focal in the intima. This cellularity persisted in the allografts but disappeared from the intima and was reduced in the adventitia of the isografts after four and five months. Disseminated EDI+ activated macrophages were the most prominent population of infiltrates whereas modest numbers of adventitial ED2+ tissue macrophages remained constant throughout the intervals examined CD4+ cells (focal and scattered) outnumbered (roughly twice) the scattered CD8+ lymphocytes; both these types were rare in the intima. Leukocyte invasion of the media was lacking (except for scarce isolated CD8+ cells in some allografts). In syngeneic grafts the smooth muscle cells (SMC) of media remained intact and the intimal thickening was slight to absent (about 5 μm) four and five months post TPL. On the other hand, the allograft media underwent severe destructive changes (karyolysis, depletion of α-SMC actin, focal calcification and general thinning without rupture or aneurysm). The prominent allograft intimal thickening (70–80 μm) was due to the proliferation of longitudinally oriented myointimal cells (α-SMC actin, ED2, PCNA and Ki67+) and an increase in matrix substance (strong metachromasia and positivity of chondroitin-sulfate proteoglycan). The deposition of lipids remained discrete, without atheromatous plaques and mural thrombosis. All changes were comparable in CyA-treated and untreated animals.

Thus the main lesions of the allografts were (i) persistent mononuclear infiltration chiefly in adventitia, (ii) destruction of medial SMC, and (iii) intimal thickening by proliferation of myointimal cells. At the post TPL intervals examined the proliferation and intimal migration of medial SMC were not apparent and a morphological correlate of significant anti-medial-SMC cytotoxic attack was lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASMA:

α isoform of smooth muscle cell actin

CHSPG:

chondroitin sulfate-proteoglycan

CyA:

cyclosporin A

DAB:

3,3′-diaminobenzidin-tetrahydrochloride

EA:

endarteritis

HAM:

anti-mouse-lg antibody produced in horse

mAb:

monoclonal antibody

PAS:

periodic acid-Schiff staining

PCNA:

proliferating cell nuclear antigen (cyclin)

PDGF:

platelet-derived growth factor

SMC:

smooth muscle cell(s)

TPL:

transplantation

References

  • Adams D.H., Wyner L.R., Karnovsky M.J.: Experimental graft atherosclerosis.Transplantation 56, 794–799 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Anderson H.D., Holm P., Sender S. et al.: Relative importance of ischemic injury and immunological injury on the development of transplant atherosclerosis in rabbit aortic allografts.Transplantation 60, 631–638 (1995).

    Article  Google Scholar 

  • Azuma H., Binder J., Heemann U. et al: Effects of RS 61443 on functional and morphological changes in chronically rejecting rat kidney allografts.Transplantation 59, 460–466 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Colvin R.B.: The pathogenesis of vascular rejection.Transplant. Proc. 23, 2052–2055 (1991)

    PubMed  CAS  Google Scholar 

  • Demetris A.J., Zerbe T., Banner B.: Morphology of solid organ allograft arteriopathy.Transplant. Proc. 21, 3667–3670 (1989).

    PubMed  CAS  Google Scholar 

  • Dennis M.J.S., Beckingham I.J., Blamey R.W.: Evaluation of animal models of chronic vascular rejection.Transplant. Proc. 25, 2102–2103 (1993).

    PubMed  CAS  Google Scholar 

  • Fellström B., Larsson E., Tufveson G.: Strategies in chronic rejection of transplanted organs—a current view on pathogenesis, diagnosis and treatment.Transplant. Proc. 21, 1435–1439 (1989).

    PubMed  Google Scholar 

  • Fellström B.C., Larsson E.: Pathogenesis and treatment perspectives of chronic rejection.Immunol. Rev. 134, 84–98 (1993).

    Article  Google Scholar 

  • Foegh M.L., Ramwell P.W.: Angiopeptin—experimental and clinical studies of inhibition of myointimal proliferation.Kidney Internat. 48 (Suppl.), 18–22 (1995).

    Google Scholar 

  • Geerling R.A., De Bruijn R.W.F., Scheringa M. et al.: Suppression of acute rejection prevents graft arteriosclerosis after allogeneic aorta transplantation in the rat.Transplantation 58, 1258–1263 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Gerlach C., Golding M., Larue L. et al.: Ki-67 immunoexpression is a robust marker of proliferative cells in the rat.Lab. Invest. 77, 697–698 (1997).

    PubMed  CAS  Google Scholar 

  • Gohra H., McDonald T.O., Vedrrier E.D., Aziz S.: Endothelial loss and regeneration in a model of transplant arteriosclerosis.Transplantation 60, 96–102 (1995).

    PubMed  CAS  Google Scholar 

  • Gonzalez Z.E., Vermeulen F., Ehrenfeld W.K.: Relations between circulating blood and pathogenesis of atherosclerosis.Israel J. Med. Sci. 5, 648–651 (1969).

    PubMed  CAS  Google Scholar 

  • Hancock W.W.: Basic science aspects of chronic rejection—induction of protective genes to prevent development of transplant arteriosclerosis.Transplant. Proc. 30, 1585–1589 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hansson G.K.: Cytokines regulate proliferation and cytoskeletal organization of vascular smooth muscle cells.Path. Res. Pract. 190, 891–894 (1994).

    PubMed  CAS  Google Scholar 

  • Häyry P., Isoniemi H., Yilmaz S. et al.: Chronic allograft rejection.Immunol. Rev. 134, 33–81 (1993).

    Article  PubMed  Google Scholar 

  • Häyry P.: Pathophysiology of chronic rejection.Transplant. Proc. 28 (Suppl.), 7–10 (1996).

    PubMed  Google Scholar 

  • Häyry P., Myllärniemi M., Aavik E. et al.: Role of growth factors in graft vessel disease.Transplant. Proc. 29, 2551–2552 (1997).

    Article  PubMed  Google Scholar 

  • Häyry P.: Common pathways in allograft arteriosclerosis and experimental vascular injury—inflammation.Transplant. Proc. 30, 685–686 (1998).

    Article  PubMed  Google Scholar 

  • Howie A.J., Bryan R.L., Gunson B.K.: Arteries and veins formed within renal vessels—a previously neglected observation.Virchows Arch. Path. Anat. 420, 301–304 (1992).

    CAS  Google Scholar 

  • Jenkins J., Boyle J.J., McPhaden A.R., Lindop G.B.M.: Three-dimensional reconstruction of abnormal intramural chronic arteries in human heart allograft biopsies.J. Pathol. 181, 247–250 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Jonasson L., Holm J., Hansson G.K.: Smooth muscle cells express la antigens during arterial response to injury.Lab. Invest. 58, 310–315 (1988).

    PubMed  CAS  Google Scholar 

  • Koskinen P.K., Lemström K.B., Häyry P.: How cyclosporin modifies histological and molecular events in the vascular wall during chronic rejection of rat cardiac allografts.Amer. J. Pathol. 146, 972–980 (1995).

    CAS  Google Scholar 

  • Lácha J., Lehmann M., Chadimová M. et al.: Effect of anti-CD4 monoclonal antibody and cyclosporin A or a combination of both on chronic rejection in the rat aortic allograft model.Transplant. Proc. 26, 3242–3243 (1994).

    PubMed  Google Scholar 

  • Li F., Yin M., van Dam J.G.: Cytomegalovirus infection enhances the neointima formation in rat aortic allografts.Transplantation 65, 1298–1304 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Maggard M.M., Ke B., Wang T.: Effects of Pravastatin on chronic rejection of rat heart allografts.Transplantation 65, 149–155 (1998).

    Article  PubMed  CAS  Google Scholar 

  • McDonald P.C., Kenyon J.A., McManus B.M.: The role of lipids in transplant vascular disease.Lab. Invest. 78, 1187–1201 (1998).

    PubMed  CAS  Google Scholar 

  • McGrath J.A., Eady R.A.J.: Heparan-sulphate proteoglycan and wound healing in skin.J. Pathol. 183, 251–252 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Mennander A., Tiisala S., Halttunen J. et al.: Chronic rejection in rat aorta allografts—an experimental model for transplant arteriosclerosis.Arterioscl. & Thromb. 11, 671–680 (1991).

    CAS  Google Scholar 

  • Motomura N., Lou H., Orskov H. et al.: Exposure of vascular allografts to IGF-1 increases vascular expression of IGF-1 ligand and receptor protein, and accelerates arteriosclerosis in rats.Transplantation 65, 1024–1030 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot D., Shanahan C.M., Weissberg P.L.: Vascular calcification—new insights into an old problem.J. Pathol. 185, 1–3 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Rossmann P., Jirka J.:Rejection Nephropathy. Elsevier-North-Holland, Amsterdam, and Academia Publishers, Prague, 1979.

    Google Scholar 

  • Rossmann P., Jirka J., Chadimová M. et al.: Arteriolosclerosis of the human renal allografts—morphology, origin, life history and relationship to cyclosporin therapy.Virchows Arch. Path. Anat. 418, 129–141 (1991).

    CAS  Google Scholar 

  • Rossmann P., Jirka J., Matoušovic K.:Renal Allograft Biopsy—Image, Interpretation, Interventions. Academic Publishers, Prague 1997.

    Google Scholar 

  • Rossmann P., Jirka J., Matoušovic K.: Immunohistochemistry of renal allograft biopsies. (In Czech)Čas. Lék. Čes. 137, 757–762 (1998).

    CAS  Google Scholar 

  • Rossmann P., Říhová B., Strohalm J., Ulbrich K.: Morphology of rat kidney and thymus after native and antibody-coupled cyclosporin A application (reduced toxicity of targeted drug).Folia Microbiol. 42, 277–287 (1997).

    Article  CAS  Google Scholar 

  • Russell M.E., Fujita M., Masek M.A.: Cardiac graft vascular disease—nonselective involvement of large and small vessels.Transplantation 56, 1599–1601 (1993).

    PubMed  CAS  Google Scholar 

  • Ryffel B., Siegel H., Petric R. et al.: Nephrotoxicity of cyclosporin in spontaneously hypertensive rats—effects on blood pressure and vascular lesions.Clin. Nephrol. 25 (Suppl.), 193–198 (1986).

    Google Scholar 

  • Schmid C., Heemann V., Tilney N.L.: Retransplantation reverses mononuclear infliltration but not myointimal proliferation in a rat model of chronic cardiac allograft rejection.Transplantation 61, 1695–1699 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Schnitz-Rixen T., Megerman J., Colvin R.B. et al.: Immunosuppressive treatment of aortic allografts.J. Vasc. Surg. 7, 82–92 (1988).

    Article  Google Scholar 

  • Schwartz R.S.: Neointima and arterial injury: dogs, rats, pigs and more.Lab. Invest. 71, 789–791 (1994).

    PubMed  CAS  Google Scholar 

  • Solez K., Axelsen R.A., Benediktsson H. et al.: International standardization for the histologic diagnosis of renal allograft rejection—the Banff working classification of kidney transplant pathology.Kidney Internat. 44, 411–422 (1993).

    Article  CAS  Google Scholar 

  • Subramanian S.V., Orosz C.G., Stranch A.R.: Vascular smooth muscle cell alpha actin as an indicator of parenchymal cell reprogramming in heart allografts.Transplantation 65, 1652–1656 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S., Ueda M., Han Y.S. et al.: Enhanced fibronectin expression is associated with the development of graft arteriosclerosis in human renal allografts.Transplant. Proc. 27, 1078–1081 (1995).

    PubMed  CAS  Google Scholar 

  • Tilney N.L., Whitley W.D.W., Diamond J.R. et al.: Chronic rejection—an underfined conundrum.Transplantation 52, 389–398 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Vanrenterghem Y.: The use of mycophenolate—Mofetil in renal transplantation.Nephron 76, 392–399 (1997).

    PubMed  CAS  Google Scholar 

  • Wilhelm M.J., Kusaka M., Pratschke J., Tilney N.L.: Chronic rejection—increasing evidence for the importance of allogen-independent factors.Transplant. Proc. 30, 2402–2406 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Xiao F., Chong A., Shen J. et al.: Pharmacologically induced regression of chronic transplant rejection.Transplantation 60, 1065–1072 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz S., Häyry P.: The impact of acute episodes of rejection on the generation of chronic rejection in rat renal allografts.Transplantation 56, 1153–1156 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rossmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossmann, P., Lácha, L. & Lodererová, A. Morphology and immunohistochemistry of rat aortic grafts. Folia Microbiol 44, 339–353 (1999). https://doi.org/10.1007/BF02818558

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818558

Keywords

Navigation