Skip to main content
Log in

GC clusters and the stability of mitochondrial genomes ofSaccharomyces cerevisiae and related yeasts

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The occurrence of GC clusters inSaccharomyces spp. and related yeasts was examined to clarify their association with the stability of intact mitochondrial genome. Abundance of nonspecific or specific GC clusters in these species decreases with phylogenetic distance fromS. cerevisiae. Their number but not the number of replication origins correlates with the ability to form respiration-deficient mutants induced by ethidium bromide. This effect is not associated with the nuclear background since the cybrids having identical nuclei and mitochondria from different species gave similar results. In contrast to grand genomes, the presence of GC clusters in ρ- mutants does not play any role in ethidium bromide induced mtDNA loss. The most plausible explanation for mitotically lost petite mtDNA seems to be dilution during the distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustin S., Müller M.W., Schweyen R.J.: Reverse self-splicing of group II intron RNAin vitro.Nature343, 383–386 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Barnett J.A.: The taxonomy of the genusSaccharomycesMeyen ex.Reess: a short review for non-taxonomists.Yeast8, 1–23 (1992).

    Article  Google Scholar 

  • Butow R.A., Perlman P.S., Grossman L.I.: The unusualVAR1 gene of the yeast mitochondrial DNA.Science228, 1496–1501 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Chen X.J., Clark-Walker G.D.: The petite mutation in yeasts: 50 years on.Internat. Rev. Cytol.194, 197–238 (2000).

    Article  CAS  Google Scholar 

  • Defontaine A., Lecocq F.M., Hallet J.N.: A rapid miniprep method for the preparation of yeast mitochondrial DNA.Nucl. Acids Res.19, 185 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann C.L., Gandy B.: Preferential recombination between GC clusters in yeast mitochondrial DNA.EMBO J.6, 4197–4203 (1987).

    PubMed  CAS  Google Scholar 

  • Dujon B.: Mitochondrial genetics and functions, pp. 505–635 in J. N. Strathern, E. W. Jones, J.R. Broach (Eds).The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1981.

    Google Scholar 

  • Fangman W.L., Henley J.W., Brewer B.J.:RPO41-independent maintenance of ρ[su- mitochondrial DNA inSaccharomyces cerevisiae.Mol. Cell. Biol.10, 10–15 (1990).

    PubMed  CAS  Google Scholar 

  • Foury F., Rognati T., Lecrenier N., Purnelle B.: The complete sequence of the mitochondrial genome ofSaccharomyces cerevisiae.FEBS Lett.440, 325–331 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Fox T.D., Folley L.S., Mulero J.J., McMullin T.W., Thorsness P.E., Hedin L.O., Constanzo M.C.: Analysis and manipulation of yeast mitochondrial genes.Meth. Enzymol.194, 149–168 (1991).

    PubMed  CAS  Google Scholar 

  • Gaillard C., Strauss F., Bernardi G.: Excision sequences in the mitochondrial genome of yeast.Nature283, 218–220 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Goldring E.S., Grossman L.I., Krupnick D., Cryer D.R., Marmur J.: The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide.J. Mol. Biol.52, 323–335 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Kolaczkowski M., Kolaczkowska A., Luczynski J., Witek S., Goffeau A.:In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network.Microb. Drug Res.4, 143–158 (1999).

    Google Scholar 

  • Koll H., Schmidt C., Weisenberger G., Schmelzer C.: Three nuclear genes suppress a yeast mitochondrial splice defect when present in high copy number.Curr. Genet.12, 503–509 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Lecrenier N., Foury F.: New features of mitochondrial DNA replication system in yeast and manGene246 37–48 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Maleszka R.: Thein vivo effects of ethidium bromide on mitochondrial and ribosomal DNA inCandida parapsilosis.Yeast10, 1203–1210 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T., Fritsch E.F., Sambrook J.:Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1982.

    Google Scholar 

  • Miller D.L., Najarian D.R., Folse J.R., Martin N.C.: A mutation in thetRNAAsp gene from yeast mitochondria.J. Biol. Chem.256, 9774–9777 (1981).

    PubMed  CAS  Google Scholar 

  • Neidle S., Abraham Z.: Structural and sequence-dependent aspects of drug intercalation into nucleic acids.CRC Crit. Rev. Biochem.17, 73–121 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Piškur J.: Transmission of yeast mitochondrial loci to progeny is reduced when nearby intergenicori/rep sequences are deleted.Mol. Gen. Genet.214, 425–432 (1988).

    Article  PubMed  Google Scholar 

  • Piškur J.: Inheritance of yeast mitochondrial genome.Plasmid31, 229–241 (1994).

    Article  PubMed  Google Scholar 

  • Piškur J., Možina S.S., Groth C., Wager S., Pedersen M.B.: Structure and genetic stability of the mitochondrial genomes vary among yeast of the genusSaccharomyces.Internat. J. Syst. Bacteriol.48, 1015–1024 (1998).

    Article  Google Scholar 

  • Rayko E. Goursot R.: Amphimeric mitochondrial genomes of petite mutants of yeast—II. A model for amplification of amphimeric mitochondrial petite DNA.Curr. Genet.30, 135–144 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Rayko E., Goursot R.: Amphimeric mitochondrial genomes of petite mutants of yeast—III. Generation by linking two secondary-structure-dependent illegitimate recombination events.Curr. Genet.35, 14–22 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Schmitt M.E., Clayton D.A.: Conserved features of yeast and mammalian mitochondrial DNA replication.Curr. Opin. Genet.3, 769–774 (1993).

    Article  CAS  Google Scholar 

  • Šoltésová A., Špírek M., Horváth A., Sulo P.: Mitochondria—a tool for simple taxonomic identification of yeasts fromSaccharomyces cerevisiae complex.Folia Microbiol.45, 99–106 (2000).

    Google Scholar 

  • Špírek M., Piškur J., Horváth A., Sulo P.: Functional co-operation betweenSaccharomyces cerevisiae nucleic and mitochondria from divergent yeast species.Curr. Genet.38, 202–207 (2000).

    Article  PubMed  Google Scholar 

  • Sulo P., Špírek M., Šoltésová A., Marinoni G., Piškur J.: The efficiency of functional mitochondrial replacement inSaccharomyces species has vectorial nature,to be published (2002).

  • Sulo P., Groom K.R., Wise C., Steffen M., Martin N.C.: Successful transformation of yeast mitochondria withRPM1: an approach forin vivo studies of mitochondrial RNAase P RNA structure, function and biosynthesis.Nucl. Acids Res.23, 856–860 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Weiller G., Schueller C.M.E., Schweyen R.J.: Putative target sites for mobile G+C rich clusters in yeast mitochondrial DNA: single elements and tandem arrays.Mol. Gen. Genet.218, 272–283 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Weiller F.G., Bruckner H., Kim H.S., Pratje E., Schweyen R.J.: A GC clusters repeat is a hot spots for mit macro-deletions in yeast mtDNA.Mol. Gen. Genet.226, 233–240 (1991).

    Article  PubMed  CAS  Google Scholar 

  • de Zamaroczy M., Fangeron-Fonty G., Bernardi G.: Excision sequences in the mitochondrial genome of yeast.Genet21, 193–202 (1983).

    Google Scholar 

  • de Zamaroczy M., Fangeron-Fonty G., Baldacci G., Goursot R., Bernardi G.: Theori sequences of the mitochondrial genome of a wild-type yeast strain: number, location, orientation and structure.Gene32, 439–457 (1984).

    Article  PubMed  Google Scholar 

  • de Zamaroczy M., Bernardi G.: Sequence organization of the mitochondrial genome of yeast—a review.Gene37, 1–17 (1985).

    Article  PubMed  Google Scholar 

  • de Zamaroczy M., Bernardi G.: The GC clusters of the mitochondrial genome of the yeast and their evolutionary origin.Gene41, 1–22 (1986).

    Article  PubMed  Google Scholar 

  • Zinn K.A., Pohlman K.J., Perlman S.P., Butow R.A.:In vivo double-strand breaks occur at recombinogenic G+C rich sequences in the yeast mitochondrial genome.Proc. Nat. Acad. Sci. USA85, 2686–2689 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Špírek, M., Šoltésová, A., Horváth, A. et al. GC clusters and the stability of mitochondrial genomes ofSaccharomyces cerevisiae and related yeasts. Folia Microbiol 47, 263–270 (2002). https://doi.org/10.1007/BF02817649

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817649

Keywords

Navigation