Skip to main content
Log in

Development of high-quantum-efficiency, lattice-mismatched, 1.0-eV GaInAs solar cells

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-quantum-efficiency, lattice-mismatched, 1.0-eV GaInAs solar cells grown by organometallic vapor phase epitaxy have been developed for ultimate integration into AlGaAs/GaAs/GaInAs 3-junction, 2-terminal monolithic devices. The more standard n/p junction was replaced with an n-i-p structure in the GaInAs cell in order to increase the short-circuit current by overcoming the material deficiencies which arise as a result of accommodating the lattice mismatch. This led to single junction 1.0-eV GaInAs cells with internal quantum efficiencies >90% and short-circuit-current densities that match or closely approach those needed to current match the upper AlGaAs and GaAs cells. A 4.1% (1-sun, air mass 0,25°C) power conversion efficiency was achieved with a developmental structure, indicating the potential of the lattice-mismatched n-i-p 1.0-eV GaInAs cell. An analogous device designed to allow direct monolithic integration with the upper AlGaAs and GaAs cells, with a modified grading layer of AlGaInAs in place of the usual GaInAs, achieved an efficiency of 2.2%, primarily due to a lower open-circuit voltage. The open-circuit voltage is perhaps limited by structural defects revealed in transmission electron micrographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C.C. Fan, M.B. Spitzer and R.P. Gale,Advances in Solar Energy, Vol 6. K.W. Boer, ed. (Plenum Press, New York, 1990), Ch. 3.

    Google Scholar 

  2. B.-C. Chung, G.F. Virshup, S. Hikido and N.R. Kaminan,Appl. Phys. Lett. 55, 1741 (1989).

    Article  CAS  Google Scholar 

  3. J.M. Olson, S.R. Kurtz, A.E. Kibbler and P. Faine,Appl. Phys. Lett. 56, 623 (1990).

    Article  CAS  Google Scholar 

  4. S. Wojtczuk, S. Tobin, M. Sanfacon, V. Haven, L. Geoffroy and S. Vernon,Conf. Record 22nd Photovoltaic, Specialists Conf. (IEEE, New York, 1991), p. 73.

    Book  Google Scholar 

  5. M.L. Timmons, J.A. Hutchby, D.K. Wagner and J.M. Tracy,Conf. Record 20th Photovaltaic Specialists Conf. (IEEE, New York, 1988) p. 602.

    Book  Google Scholar 

  6. L. Mayet, M. Gavand, B. Montegu, J.P. Boyeaux and A. Laugier,Conf. Record 21st Photovoltaic Specialists Conf. (IEEE, New York, 1990), p. 64

    Book  Google Scholar 

  7. M.W. Wanlass, J.S. Ward, T.A. Gessert, K.A. Emery, G.S. Horner, T.J. Coutts, G.F. Virshup and M.L. Ristow,Conf. Record 21st Photovoltaic Specialists Conf. (IEEE, New York, 1990), p. 172.

    Book  Google Scholar 

  8. C.C. Shen, P.T. Chang and K.A. Emery,Conf. Record 22nd Photovoltaic Specialists Conf. (IEEE, New York, 1991), p. 381.

    Book  Google Scholar 

  9. B.-C. Chung, G.F. Virshup, M. Klausmeier-Brown, M. Ladle Ristow and M.W. Wanlass,Conf. Record 22nd Photovoltaic Speciliasts Conf. (IEEE, New York, 1991), p. 54.

    Book  Google Scholar 

  10. N.P. Kim, J.M. Stewart, B.J. Stanbery, R.A. Mickelsen, W.E. Devaney, W.S. Chen, R.M. Burgess, R.W. McClelland, S. Shastry, J. Dingle, D.S. Hill, B.D. Dingle and R.P. Gale,Conf. Record 22nd Photovoltaic Specialists Conf. (IEEE, New York, 1991), p. 68.

    Book  Google Scholar 

  11. J.E. Avery, L.M. Fraas, V.S. Sundaram, N. Mansoori, J.W. Yerkes, D.J. Brinker, H.B. Curtis and M.J. O'Neill,Conf. Record 21st Photovoltaic Specialists Conf. (IEEE, New York, 1990), p. 1277.

    Book  Google Scholar 

  12. H.F. MacMillan, H.C. Hamaker, G.F. Virshup and J.G. Werthen,Conf. Record 20th Photovoltaic Specialists Conf. (IEEE, New York, 1988), p. 48.

    Book  Google Scholar 

  13. B.-C. Chung, G.F. Virshup and J.C. Schultz,Conf. Record 21st Photovoltaic Specialists Conf. (IEEE, New York, 1990), p. 179.

    Book  Google Scholar 

  14. G.W. Wang,Appl. Phys. Lett. 59, 573 (1991).

    Article  CAS  Google Scholar 

  15. J.G. Werthen, B.A. Arau, C.W. Ford, N.R. Kaminar, M.S. Kuryla, M. Ladle Ristow, C.R. Lewis, H.F. MacMillan and G.F. Virshup,Conf. Record 20th Photovoltaic Specialists Conf. (IEEE, New York, 1988), p. 640.

    Book  Google Scholar 

  16. L.D. Partain, M.S. Kuryla, R.E. Weiss, R.A. Ransom, P.S. McLeod, L.M. Fraas and J.A. Cape,J. Appl. Phys. 62, 3010 (1987).

    Article  CAS  Google Scholar 

  17. Y. Hamakawa,Current Topics in Photovoltaics, eds. T.J. Coutts and J.D. Meakin (Academic Press, London, 1985), Ch. 3.

    Google Scholar 

  18. C.R. Lewis, W.T. Dietze and M.J. Ludowise,J. Electron. Mater. 12, 507 (1983).

    Article  CAS  Google Scholar 

  19. C.R. Lewis, M.J. Ludowise and W.T. Dietze,J. Electron. Mater. 13, 447 (1984).

    Article  CAS  Google Scholar 

  20. R.E. Nahory, M.A. Pollack, W.D. Johnston, Jr. and R.L. Barns,Appl. Phys. Lett. 33, 659 (1978).

    Article  CAS  Google Scholar 

  21. H.F. MacMillan, B.-C. Chung, H.C. Hamaker, N.R. Kaminar, M.S. Kuryla, M. Ladle Ristow, D.D. Liu, L.D. Partain, J.C. Schultz, G.F. Virshup and J.G. Werthen,Solar Cells 27, 205 (1989).

    Article  CAS  Google Scholar 

  22. This is estimated by setting the currents of the three cells equal at each cell's maximum power point, using I-V curves for the AlGaAs and GaAs cells as given in Refs. 1 and 7, and a typical n-i-p farside I-V curve.

  23. H.C. Hamaker,J. Appl. Phys. 58, 2344 (1985).

    Article  CAS  Google Scholar 

  24. J.C. Schultz, M.E. Klausmeier-Brown, M. Ladle Ristow and M.M. Al-Jassim,Conf. Record 21st Photovoltaic Specialists Conf. (IEEE, New York, 1990), p. 148.

    Book  Google Scholar 

  25. S.N.G. Chu, S. Nakahara, R.F. Karlicek, K.E. Strege, D. Mitcham and W.D. Johnston, Jr.J. Appl. Phys. 59, 3441 (1986).

    Article  CAS  Google Scholar 

  26. B.I. Miller, E.F. Schubert, U. Koren, A. Ourmazd, A.H. Dayem and R.J. Capik,Appl. Phys. Lett. 49, 1384 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, J.C., Klausmeier-Brown, M.E., Ristow, M.L. et al. Development of high-quantum-efficiency, lattice-mismatched, 1.0-eV GaInAs solar cells. J. Electron. Mater. 22, 755–761 (1993). https://doi.org/10.1007/BF02817351

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817351

Key words

Navigation