Skip to main content
Log in

Biological function of DNA methylation

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Structural and functional properties of prokaryotic DNA methyltransferases are summarized. The different aspects of the role of DNA methylation which influences DNA-protein interaction in restriction and modification of DNA and in mismatch repair, DNA replication and gene expression are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R.L.P.: DNA methylation.Biochem. J. 265, 309–320 (1990).

    PubMed  CAS  Google Scholar 

  • Adams R.L.P., Burdon R.H.:Enzymes of Nucleic Acid Synthesis and Processing (S.T. Jacob, Ed.), Vol. 1, pp. 119–144. CRC Press, Boca Raton (FL) 1983.

    Google Scholar 

  • Adams R.L.P., Rinaldi A., McGarvey M., Bryans M., Ball K.: Eukaryotic DNA methyltransferase: tissue and species distribution.Gene 74, 125–128 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Bale A., d’Alarcao M., Marinus M.G.: Characterization of DNA adenine methylation mutants ofEscherichia coli K-12.Mut. Res. 59, 165–175 (1979).

    Google Scholar 

  • Borek E., Srinivasan R.P.: The methylation of nucleic acids.Ann. Rev. Biochem. 35, 275–297 (1966).

    Article  CAS  Google Scholar 

  • Burckhardt J., Weisemann J., Hamilton D.L., Yuan R.: Complexes formed between the restriction endonucleaseEcoK and heteroduplex DNA.J. Mol. Biol. 153, 425–440 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Bühler R., Yuan R.: Characterization of a restriction enzyme fromEscherichia coli K carrying a mutation on the modification subunit.J. Biol. Chem. 253, 6756–6760 (1978).

    PubMed  Google Scholar 

  • Cowan G.M., Gann A.A.F., Murray N.E.: Conservation of complex DNA recognition domains between families of restriction enzymes.Cell 56, 103–109 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Hubáček J., Glover S.W.: Complementation analysis of temperature-sensitive host specificity mutations inEscherichia coli.J. Mol. Biol. 50, 111–127 (1970).

    Article  PubMed  Google Scholar 

  • Hubáček J., Zinkevich V.E., Weiserová M.: The location of temperature-sensitivetrans-dominant mutation and its effect on restriction and modification inEscherichia coli K12.J. Gen. Microbiol. 135, 3057–3065 (1989).

    PubMed  Google Scholar 

  • Jones M., Wagner R., Radman M.: Repair of a mismatch is influenced by the base composition of the surrounding nucleotide sequence.Genetics 115, 605–610 (1987).

    PubMed  CAS  Google Scholar 

  • Kan N.C., Lautenberger J.A., Edgell M.H., Hutchinson III,C.A.: The nucleotide sequence recognized by theEscherichia coli K12 restriction and modification enzymes.J. Mol. Biol. 130, 191–209 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Kelleher J.E., Daniel A.S., Murray N.E.: Mutations that conferde novo activity upon a maintenance methyltransferase.J. Mol. Biol. 221, 431–440 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N.: Mechanism and regulation Tn10 and IS10 transposition, pp. 221–237 inRegulation of Gene Expression (I. Booth, C. Higgins, Eds). Symp. Soc. Gen. Microbiol, Cambridge University Press, Cambridge 1986.

    Google Scholar 

  • Kleckner N., Morisato D., Roberts D., Bender J.: Mechanism and regulation of Tn10 transposition.Cold Spring Harbor Symp. Quant. Biol. 49, 235–244 (1984).

    PubMed  CAS  Google Scholar 

  • Längle-Rouault F., Maenhaut-Michel G., Radman M.: GATC sequences, DNA nicks and the MutH function inEscherichia coli mismatch repair.EMBO J. 6, 1121–1127 (1987).

    PubMed  Google Scholar 

  • Lu A.-L., Welch K., Clark S., Su S.-S., Modrich P.: Repair of DNA base-pair mismatches in extracts ofEscherichia coli.Cold Spring Harbor Symp. Quant. Biol. 49, 589–596 (1984).

    PubMed  CAS  Google Scholar 

  • Lyons S.M., Schendel P.F.: Kinetics of methylation inEscherichia coli K12.J. Bacteriol. 159, 421–423 (1984).

    PubMed  CAS  Google Scholar 

  • Marinus M.G.: Methylation of DNA, pp. 697–702 inEscherichia coli and Salmonella typhimurium Cellular and Molecular Biology (F.C. Neihardt, Ed. in Chief), Vol. I. American Society for Microbiology, Washington (DC) 1987.

    Google Scholar 

  • Meselson M., Yuan R.: DNA restriction enzyme fromEscherichia coli.Nature 217, 1111–1114 (1968).

    Article  Google Scholar 

  • Messer W., Bellekes U., Lother H.: Effect ofdam-methylation on the activity of the replication origin,oriC.EMBO J. 4, 1319–1326 (1985).

    Google Scholar 

  • Modrich P.: Methyl-directed DNA mismatch correction.J. Biol. Chem. 264, 6597–6600 (1989).

    PubMed  CAS  Google Scholar 

  • Oka A., Sugimoto K., Takanami M., Hirota Y.: Replication origin ofEscherichia coli K-12 chromosome: the size and structure of the minimum DNA segment carrying the information for autonomous replication.Mol. Gen. Genet. 178, 9–20 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Peterson K.R., Wertman K.F., Mount D.W., Marinus M.G.: Viability ofEscherichia coli K-12 DNA adenine methylase (dam) mutants requires increased expression of specific genes in the SOS regulon.Mol. Gen. Genet. 201, 14–19 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Pösfai J., Bhagwat A.S., Posfai G., Roberts R.J.: Predictive motifs derived from cytosine methyltransferases.Nucl. Acid. Res. 17, 2421–2435 (1989).

    Article  Google Scholar 

  • Price C., Lingner J., Bickle T.A.: Basis for changes in DNA recognition by theEcoR124 andEcoR124/3 type I DNA restriction and modification enzymes.J. Mol. Biol. 205, 115–125 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Smith D.W., Garland A.M., Herman G., Enns R.E., Baker T.A., Zyskind J.W.: Importance of state of methylation oforiC GATC sites in initiation of DNA replication inEscherichia coli.EMBO J. 4, 1327–1332 (1985).

    Google Scholar 

  • Sternberg N.: Evidence that adenine methylation influences DNA—protein interactions inEscherichia coli.J. Bacteriol. 164, 490–493 (1985).

    PubMed  CAS  Google Scholar 

  • Su S.-S., Modrich P.:Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs.Proc. Nat. Acad. Sci. USA 83, 5057–5061 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Subbaramaiah K., Charles H., Simms S.A.: Probing the role of cysteine residues in theCheR methyltransferase.J. Biol. Chem. 266, 19023–19027 (1991).

    PubMed  CAS  Google Scholar 

  • Vovis G.F., Horiuchi K., Hartman W., Zinder N.D.: Restriction endonuclease B and f1 heteroduplex DNA.Nature New Biol. 246, 13–16 (1973).

    PubMed  CAS  Google Scholar 

  • Wilson G.G.: Type II restriction-modification systems.Trends Genet. 4, 314–318 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Wilson G.G.: Organization of restriction modification systems.Nucl. Acid. Res. 19, 2539–2566 (1991).

    Article  CAS  Google Scholar 

  • Yuan R.: Structure and mechanism of multifunctional restriction endonucleases.Ann. Rev. Biochem. 50, 285–315 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Zinkevich V.E., Weiserová M., Kryukov V.M., Hubáček J.: A mutation that converts serine340 of the HsdSK polypeptide to phenylalanine and its effects on restriction and modification inEscherichia coli K-12.Gene 90, 125–128 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Zinkevich V.E., Heslop P., Glover S.W., Weiserová M., Hubáček J., Firman K.: A mutation that identifies a protein: protein interaction domain in the specificity polypeptide of the type I restriction endonuclease R·EcoK.J. Mol. Biol., in press (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubáček, J. Biological function of DNA methylation. Folia Microbiol 37, 323–329 (1992). https://doi.org/10.1007/BF02815658

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815658

Keywords

Navigation