Skip to main content
Log in

Rationales for cancer chemotherapy with PDMP, a specific inhibitor of glucosylceramide synthase

  • Published:
Molecular and chemical neuropathology

Abstract

A proposed weak point in cancer cells is their need to synthesize novel or rare glucosphingolipids. It is further proposed that cancer patients be treated with a drug that slows the synthesis of glucosylceramide, the precursor of a large family of glucosphingolipids. Experimental data are furnished for chemotherapeutic and biochemical effects of PDMP, an analog of glucosylceramide and its precursor, ceramide. Promising results were obtained in the treatment of mice carrying Ehrlich ascites carcinoma cells and rats carrying C6 glioma cells. PDMP was found to be oxidized by cytochrome P-450, but this process could be blocked in vivo with piperonyl butoxide or cimetidine. A high level of blood glucose was found to elevate the size of rat kidneys and their content of UDP-glucose and its product, glucosylceramide. The excessive growth could be blocked by PDMP, which competes with UDP-glc for binding to glucosylceramide synthase. It is suggested that cancer patients be maintained at a low glucose level in order to slow the synthesis of glucosylceramide by tumor cells. Metabolic changes produced by PDMP in cultured cells, besides a rapid deletion of glucosphingolipids, were accumulation of the precursors (ceramide and sphingosine), loss of protein kinase C, and accumulation of diacylglycerol. It is suggested that many of the cellular changes produced by PDMP, such as loss of cell binding, are owing to existence of glucosylceramide-based “islands” floating in the outer cell surface; the islands may contain growth factor receptors and adhesion factors. An inhibitor that blocks sphingolipid synthesis, such as cycloserine, may prove to be a useful adjuvant for therapy with PDMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbour S., Edidin M., Felding-Habermann B., Taylor-Norton J., Radin N. S., and Fenderson B. A. (1992).J. Cell. Physiol. 150, 610–619.

    Article  CAS  Google Scholar 

  • Byrne M. C., Farooq M., Sbaschnig-Agler M., Norton W. T., and Ledeen R. W. (1988).Brain Res. 461, 87–97.

    Article  CAS  Google Scholar 

  • Felding-Habermann B., Igarashi Y., Fenderson B. A., Park L. S., Radin N. S., Inokuchi J., Strassmann G., Handa K., and Hakomori S. (1990).Biochemistry 29, 6314–6322.

    Article  CAS  Google Scholar 

  • Fenderson B. A., Radin N., and Andrews P. W. (1993).Eur. Urol. 23 30–37.

    Article  CAS  Google Scholar 

  • Hakomori S. (1991).Cancer Cells 3, 461–470.

    CAS  PubMed  Google Scholar 

  • Holmes E. H., Hakomori S., and Ostrander G. K. (1987).J. Biol. Chem. 262, 15649–15658.

    CAS  PubMed  Google Scholar 

  • Hoon D. S. B., Kaback M. M., Lim-Steele J., Tsuchida T., Morton D. L., and Irie R. F. (1992).Biochem. Int. 27, 343–352.

    CAS  PubMed  Google Scholar 

  • Inokuchi J., Mason I., and Radin N. S. (1987).Cancer Lett. 38, 23–30.

    Article  CAS  Google Scholar 

  • Inokuchi J., Momosaki K., Shimeno H., Nagamatsu A., and Radin N. S. (1989)J. Cell. Physiol. 141, 573–583.

    Article  CAS  Google Scholar 

  • Inokuchi J. and Radin N. S. (1987).J. Lipid Res. 28, 565–571.

    CAS  PubMed  Google Scholar 

  • Kojima N. and Hakomori S. (1991).J. Biol. Chem. 266, 17552–17558.

    CAS  PubMed  Google Scholar 

  • Metz R. J. and Radin N. S. (1982).J. Biol. Chem. 257, 12901–12907.

    CAS  PubMed  Google Scholar 

  • Radin N. S., Brenkert A., Arora R. C., Sellinger O. Z., and Flangas A. L. (1972)Brain Res. 39, 163–169.

    Article  CAS  Google Scholar 

  • Radin N. S., and Inokuchi J. (1988).Biochem. Pharmacol. 37, 2879–2886.

    Article  CAS  Google Scholar 

  • Radin N. S., Shayman J. A., and Inokuchi J. (1993) Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances, inAdvances in Lipid Research; Sphingolipids in Signaling, Part B, vol. 26, (Bell R. M., Hannun Y. A., and Merrill A. H., eds.), pp. 183–213, Academic, San Diego.

    Google Scholar 

  • Rosenwald A. G., Machamer C. E., and Pagano R. E. (1992).Biochemistry 31, 3581–3590.

    Article  CAS  Google Scholar 

  • Shayman J. A., Deshmukh G., Mahdiyoun S., Thomas T. P., Wu D., Barcelon F. S., and Radin N. S. (1991).J. Biol. Chem. 266, 22968–22974.

    CAS  PubMed  Google Scholar 

  • Shayman J. A., Mahdiyoun S., Deshmukh G., Barcelon F., Inokuchi J., and Radin N. S. (1990).J. Biol. Chem. 265, 12135–12138.

    CAS  PubMed  Google Scholar 

  • Shukla A. and Radin N. S. (1991).J. Lipid Res. 32, 713–722.

    CAS  PubMed  Google Scholar 

  • Shukla G., Shukla A., Inokuchi J., and Radin N. S. (1991).Biochim. Biophys. Acta 1083, 101–108.

    Article  CAS  Google Scholar 

  • Wachs H. (1947).Science 105, 530, 531.

    Article  CAS  Google Scholar 

  • Watkins P. B. (1990).Semin. Liver Dis. 10, 235–250.

    Article  CAS  Google Scholar 

  • Vunnam R. R. and Radin N. S. (1980).Chem. Phys. Lipids 26, 265–278.

    Article  CAS  Google Scholar 

  • Zador I. Z., Deshmukh G. D., Kunkel R., Johnson K., Radin N. S., and Shayman J. A. (1993).J. Clin. Invest. 91, 797–803.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radin, N.S. Rationales for cancer chemotherapy with PDMP, a specific inhibitor of glucosylceramide synthase. Molecular and Chemical Neuropathology 21, 111–127 (1994). https://doi.org/10.1007/BF02815346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815346

Index Entries

Navigation