Skip to main content
Log in

Decreased mesopontine choline acetyltransferase levels in schizophrenia

Correlations with cognitive functions

  • Published:
Molecular and Chemical Neuropathology

Abstract

The objective was to replicate a reported decrease of choline acetyltransferase (ChAT) in the mesopontine tegmentum of deceased schizophrenics and to see if such a decrease is related to their cognitive status as measured during life. Rigorous antemortem psychiatric evaluations were performed on our large population of schizophrenic patients. Mesopontine tissue was collected promptly following death from eight of these patients, from an additional five schizophrenics without systematic premortem psychiatric evaluation, and from control subjects. ChAT content of this brain tissue was determined using Western immunoblot analysis. There were 13 schizophrenic patients and 8 control subjects. The mean age of subjects in the two groups was similar (64±9 yr vs 63±10 yr). Even in the face of reduced post mortem intervals in the patients with schizophrenia, mesopontine tegmental ChAT concentrations were depressed by 70% in schizophrenic patients (1.28±1.74 vs 4.39±3.20 ng ChAT/μg tissue protein,P<0.01), and correlated with orientation and reasoning (r s=0.90 and 0.98, respectively) in those subjects assessed antemortem. Mesopontine ChAT concentrations are depressed in schizophrenia and correlate significantly with measures of cognitive performance in patients with this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Psychiatric Association (1994)Diagnostic and Statistical Manual of Mental Disorders, 4th ed. Washington, DC.

  • Blaha C. D. and Winn P. (1993) Modulation of dopamine afflux in the striatum following cholinergic stimulation of the substantia nigra in intact and pedunculopontine tegmental nucleus-lesioned rats.J. Neurosci. 13, 1035–1044.

    PubMed  CAS  Google Scholar 

  • el-Mallakh R. S., Kirch D. G., Shelton R., Fan K. J., Pezeshkpour G., Kanhouwa S., Wyatt R. J., and Kleinman J. E. (1991) The nucleus basalis of Meynert, senile plaques, and intellectual impairment in schizophrenia.J. Neuropsychiatry Clin. Neurosci. 3, 383–386.

    PubMed  CAS  Google Scholar 

  • Feighner J. P., Robins E., Guze S. B., Woodruff R. A., Winokur G., and Munzo R. (1972) Diagnostic criteria for use in psychiatric research.Arch. Gen. Psychiatry 26, 57–63.

    PubMed  CAS  Google Scholar 

  • Griffin W. S. T., Stanley L. C., Yerain O., Rovnaghi C. R., and Marshak D. R. (1993) Methods for the study of cytokines in human neurodegenerative disease, in De Souza E. B., ed.,Neurobiology of Cytokines, Methods in Science, vol 17. 268–287.

  • Hebb C. O. and Whittaker V. P. (1958) Intracellular distribution of acetylcholine and choline acetylase.J. Physiol 142, 187–196.

    PubMed  CAS  Google Scholar 

  • Janowsky D. S., el-Yousef M. K., and Davis J. M. (1973a) Provocation of schizophrenic symptoms by intravenous administration of methylphenidate.Arch. Gen. Psychiatry 28, 185–191.

    PubMed  CAS  Google Scholar 

  • Janowsky D. S., el-Yousef M. K., and Davis J. M. (1973b) Antagonistic effects of physostigmine and methylphenidate in man.Am. J. Psychiatry 130, 1370–1376.

    PubMed  CAS  Google Scholar 

  • Karson C. N., Garcia-Rill E., Biedermann J., Mrak R. E., Husain M. M., and Skinner R. D. (1991) The brain stem reticular formation in schizophrenia.Psychiatry Res. 40, 31–48.

    Article  PubMed  CAS  Google Scholar 

  • Karson C. N., Casanova M. F., Kleinman J. E., and Griffin W. S. T. (1993) Choline acetyltransferase in schizophrenia.Am. J. Psychiatry 150(3), 455–459.

    Google Scholar 

  • Karson C. N., Griffin W. S. T., Mrak R. E., Husain M. M., Dawson T. M., Snyder S. H., Moore N. C., and Sturner W. Q. (1996) Nitric oxide synthase (NOS) in schizophrenia: Increases in cerebellar vermis.Mol. Chem. Neuropathol. 27, 275–284.

    PubMed  CAS  Google Scholar 

  • Mirra S. S., Heyman A., McKeel D., Sumi S. M., Crain B. J., Brownlee L. M., Vogel F. S., Hughes J. P., VanBelle G., Berg L., and Participating CERAD Neuropathologists (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease.Neurology 41, 479–486.

    PubMed  CAS  Google Scholar 

  • Museser K. T., Yarnold P. R., Levinson D. V., Singh H., Bellack, A. S., Kee K., and Morrison R. L. (1988) Northern California Neurobehavioral Group, Inc. The neurobehavioral cognitive status examination (NCSE), Fairfax, CA.

  • National Institute of Mental Health (1975) Abnormal Involuntary Movement Scale (AIMS).Psychopharmacology 4, 3–6.

    Google Scholar 

  • Overall E. and Gorham D. R. (1962) The Brief Psychiatric Rating Scale (BPRS).Psychol. Rep. 10, 799–812.

    Article  Google Scholar 

  • Pape H. C. and Mager R. (1992) Nitric oxide controls oscillatory activity in thalamorcortical neurons.Neuron 9, 441–448.

    Article  PubMed  CAS  Google Scholar 

  • Salzman S., Endicott J., Clayton P., and Winokur G. (eds.) (1983) Diagnostic Evaluation After Death (DEAD). NIMH Neurosciences Research Branch, Rockville, MD.

    Google Scholar 

  • Schooler N. and Kane J. M. (1982) Research diagnoses for tardive dyskinesia.Arch. Gen. Psychiatry 39, 486–487.

    PubMed  CAS  Google Scholar 

  • Siegel S. (1956)Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill Series in Psychology. Harlow, H. F., Ed. McGraw-Hill Book Company, New York, NY.

    Google Scholar 

  • Sofroniew M. V., Priestley J. V., Consolazione A., Eckenstein F., and Cuello A. C. (1985) Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry.Brain Res. 329, 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Spitzer R. L., Endicott J., and Robbins E. (1977)Research Diagnostic Criteria (RDC) for a Selected Group of Functional Disorders, 3rd ed. Biometrics Research Department, New York State Psychiatric Institute, New York.

    Google Scholar 

  • Steriade M., Parent A., Pare D., and Smith Y. (1987) Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei.Brain Res. 408, 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Tandon R. and Greden J. F. (1989) Cholinergic hyperactivity and negative schizophrenic symptoms.Arch. Gen. Psychiatry 46, 745–753.

    PubMed  CAS  Google Scholar 

  • Tucek S. (1990) The synthesis of acetylcholine: Twenty years of progress.Prog. Brain Res. 84, 467–477.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karson, C.N., Mrak, R.E., Husain, M.M. et al. Decreased mesopontine choline acetyltransferase levels in schizophrenia. Molecular and Chemical Neuropathology 29, 181–191 (1996). https://doi.org/10.1007/BF02815001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815001

Index Entries

Navigation