Skip to main content
Log in

Genes and homology in nervous system evolution: Comparing gene functions, expression patterns, and cell type molecular fingerprints

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

The evolution of the nervous system is one of the most fascinating, but also most nebulous fields of homology research. We do not know for example whether the last common ancestors of human, squid, and fly already possessed an elaborate brain and eyes, or rather had a simple, diffuse nervous system. Nevertheless, in the past decade molecular data has greatly advanced our understanding of bilaterian nervous system evolution. In this methodological review, I explain the four levels on which molecular genetic studies advance the quest for homologies between animal nervous systems. (I) Bioinformatic homology research elucidates the evolutionary history of gene families relevant for nervous system evolution such as the opsin superfamily. It tells us when and in what order genes and their functions have emerged. Based on this, we can (II) infer the organismal complexity of some remote ancestor from the functional diversity of its reconstructed proteome. (III) Most common in molecular homology research has been the comparison of expression patterns of developmental control genes. This approach matches and aligns embryonic regions along the body axes, between remote bilaterians. It does not tell us much, however, about the complexity of structures that developed from these regions in Urbilateria. (IV) This is overcome by a novel variant of molecular homology research, the comparison of cell types. Here, a similar “molecular fingerprint” of cells is taken as indication of cross-bilaterian homology. This approach makes it possible to reconstruct the cell-type repertoire of the urbilaterian nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, D.W., Park, D., St Pierre, S.E., Taghert, P.H., Thor, S., 2005. Regulators acting in combinatorial codes also act independently in single differentiating neurons. Neuron 45, 689–700.

    Article  PubMed  CAS  Google Scholar 

  • Arendt, D., 2003. Evolution of eyes and photoreceptor cell types. Int. J. Dev. Biol. 47, 563–571.

    PubMed  Google Scholar 

  • Arendt, D., 2004. Comparative aspects of gastrulation. In: Stern, C. (Ed.), Gastrulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Arendt, D., Nübler-Jung, K., 1994. Inversion of dorsoventral axis? Nature 371, 26.

    Article  PubMed  CAS  Google Scholar 

  • Arendt, D., Nübler-Jung, K., 1999. Comparison of early nerve cord development in insects and vertebrates. Development 126, 2309–2325.

    PubMed  CAS  Google Scholar 

  • Arendt, D., Tessmar, K., de Campos-Baptista, M.I., Dorresteijn, A., Wittbrodt, J., 2002. Development of pigment-cup eyes in the polychaetePlatynereis dumerillii and evolutionary conservation of larval eyes in Bilateria. Development 129, 1143–1154.

    PubMed  CAS  Google Scholar 

  • Arendt, D., Tessmar-Raible, K., Snyman, H., Dorresteijn, A.W., Wittbrodt, J., 2004. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306, 869–871.

    Article  PubMed  CAS  Google Scholar 

  • Bock, W.J., 1989. The homology concept: its philosophical foundation and practical methodology. Zool. Betr. N. F. 32, 327–353.

    Google Scholar 

  • Casarosa, S., Andreazzoli, M., Simeone, A., Barsacchi, G., 1997. Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development. Mech. Dev. 61, 187–198.

    Article  PubMed  CAS  Google Scholar 

  • D’Alessio, M., Frasch, M., 1996. msh may play a conserved role in dorsoventral patterning of the neuroectoderm and mesoderm. Mech. Dev. 58, 217–231.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R.J., Tavsanli, B.C., Dittrich, C., Walldorf, U., Mardon, G., 2003. Drosophila retinal homeobox (drx) is not required for establishment of the visual system, but is required for brain and clypeus development. Dev. Biol. 259, 272–287.

    Article  PubMed  CAS  Google Scholar 

  • Deininger, W., Fuhrmann, M., Hegemann, P., 2000. Opsin evolution: out of wild green yonder? Trends Genet. 16, 158–159.

    Article  PubMed  CAS  Google Scholar 

  • Deininger, W., Kroger, P., Hegemann, U., Lottspeich, F., Hegemann, P., 1995. Chlamyrhodopsin represents a new type of sensory photoreceptor. Embo J. 14, 5849–5858.

    PubMed  CAS  Google Scholar 

  • Deschet, K., Bourrat, F., Ristoratore, F., Chourrout, D., Joly, J.-S., 1999. Expression of the medaka(Oryzias latipes) Ol-Rx3 paired-like gene in two diencephalic derivatives, the eye and the hypothalamus. Mech. Dev. 83, 179–182.

    Article  PubMed  CAS  Google Scholar 

  • De Velasco, B., Shen, J., Go, S., Hartenstein, V., 2004. Embryonic development of theDrosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev. Biol. 274, 280–294.

    Article  PubMed  CAS  Google Scholar 

  • Eakin, R., 1968. Evoluation of Photoreceptors. Appleton-Century-Crofts, New York.

    Google Scholar 

  • Eakin, R.M., 1979. Evolutionary significance of photoreceptors: in retrospect. Am. Zool. 19, 647–653.

    Google Scholar 

  • Eakin, R.M., 1982. In: Westfall, J.A. (Ed.), Continuity and Diversity in Photoreceptors. Visuals cells in Evolution Raven Press, New York, pp. 91–105.

    Google Scholar 

  • Ebnet, E., Fischer, M., Deininger, W., Hegemann, P., 1999. Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green algaVolvox carteri. Plant Cell 11, 1473–1484.

    Article  PubMed  CAS  Google Scholar 

  • Eggert, T., Hauck, B., Hildebrandt, N., Gehring, W.J., Walldorf, U., 1998. Isolation of a Drosophila homolog of the vertebrate homeobox gene Rx and its possible role in brain and eye development. Proc. Natl. Acad. Sci. USA 95, 2343–2348.

    Article  PubMed  CAS  Google Scholar 

  • Eichinger, L., Pachebat, J.A., Glockner, G., Rajandream, M.A., Sucgang, R., Berriman, M., Song, J., Olsen, R., Szafranski, K., Xu, Q., Tunggal, B., Kummerfeld, S., Madera, M., Konfortov, B.A., Rivero, F., Bankier, A.T., Lehmann, R., Hamlin, N., Davies, R., Gaudet, P., Fey, P., Pilcher, K., Chen, G., Saunders, D., Sodergren, E., Davis, P., Kerhornou, A., Nie, X, Hall, N., Anjard, C., Hemphill, L., Bason, N., Farbrother, P., Desany, B., Just, E., Morio, T., Rost, R., Churcher, C., Cooper, J., Haydock, S., van Driessche, N., Cronin, A., Goodhead, I., Muzny, D., Mourier, T., Pain, A., Lu, M., Harper, D., Lindsay, R., Hauser, H., James, K., Quiles, M., Madan Babu, M., Saito, T., Buchrieser, C., Wardroper, A., Felder, M., Thangavelu, M., Johnson, D., Knights, A., Loulseged, H., Mungall, K., Oliver, K., Price, C., Quail, M.A., Urushihara, H., Hernandez, J., Rabbinowitsch, E., Steffen, D., Sanders, M., Ma, J., Kohara, Y., Sharp, S., Simmonds, M., Spiegler, S., Tivey, A., Sugano, S., White, B., Walker, D., Woodward, J., Winckler, T., Tanaka, Y., Shaulsky, G., Schleicher, M., Weinstock, G., Rosenthal, A., Cox, E.C., Chisholm, R.L., Gibbs, R., Loomis, W.F., Platzer, M., Kay, R.R., Williams, J., Dear, P.H., Noegel, A.A., Barrell, B., Kuspa, A., 2005. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M., 1970. Distinguishing homologous from analogous proteins. Syst. Zool. 19, 99–113.

    Article  PubMed  CAS  Google Scholar 

  • Gehring, W.J., Ikeo, K., 1999. Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet. 15, 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, J., 2000. Inversion of the chordate body axis: are there alternatives? Proc. Natl. Acad. Sci. USA 97, 4445–4448.

    Article  PubMed  CAS  Google Scholar 

  • Hewes, R.S., Taghert, P.H., 2001. Neuropeptides and neuropeptide receptors in theDrosophila melanogaster genome. Genome Res. 11, 1126–1142.

    Article  PubMed  CAS  Google Scholar 

  • Hill, C.A., Fox, A.N., Pitts, R.J., Kent, L.B., Tan, P.L., Chrystal, M.A., Cravchik, A., Collins, F.H., Robertson, H.M., Zwiebel, L.J., 2002. G protein-coupled receptors in Anopheles gambiae. Science 298, 176–178.

    Article  PubMed  CAS  Google Scholar 

  • Holland, N.D., 2003. Early central nervous system evolution: an ear of skin brains? Nat. Rev. Neurosci. 4, 1–11.

    Article  CAS  Google Scholar 

  • Holley, S.A., Jackson, P.D., Sasai, Y., Lu, B., De Robertis, E.M., Hoffmann, F.M., Ferguson, E.L., 1995. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin [see comments]. Nature 376, 249–253.

    Article  PubMed  CAS  Google Scholar 

  • King, N., Hittinger, C.T., Carroll, S.B., 2003. Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301, 361–363.

    Article  PubMed  CAS  Google Scholar 

  • Lacalli, T., 2003. Evolutionary biology: body plans and simple brains. Nature 424, 263–264.

    Article  PubMed  CAS  Google Scholar 

  • Lacalli, T.C., 2004. Sensory systems in amphioxus: a window on the ancestral chordate condition. Brain Behav. Evol. 64, 148–162.

    Article  PubMed  Google Scholar 

  • Loosli, F., Köster, R.W., Carl, M., Krone, A., Wittbrodt, J., 1998. Six3, a medaka homologue of theDrosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech. Dev. 74, 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Loosli, F., Winkler, S., Burgtorf, C., Wurmbach, E., Ansorge, W., Henrich, T., Grabher, C., Arendt, D., Carl, M., Krone, A., Grzebisz, E., Wittbrodt, J., 2001. Medakaeyeless is the key factor linking retinal dertermination and eye growth. Development 128, 4035–4044.

    PubMed  CAS  Google Scholar 

  • Lowe, C.J., Wu, M., Salic, A., Evans, L., Lander, E., Stange-Thomann, N., Gruber, C.E., Gerhart, J., Kirschner, M., 2003. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113, 853–865.

    Article  PubMed  CAS  Google Scholar 

  • Mathers, P.H., Grinberg, A., Mahon, K.A., Jamrich, M., 1997. The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607.

    Article  PubMed  CAS  Google Scholar 

  • Matsunami, H., Amrein, H., 2003. Taste and pheromone perception in mammals and flies. Genome Biol. 4, 220.

    Article  PubMed  Google Scholar 

  • Melkman, T., Sengupta, P., 2005. Regulation of chemosensory and GABAergic motor neuron development by theC. elegans Aristaless/Arx homolog alr-1. Development 132, 1935–1949.

    Article  PubMed  CAS  Google Scholar 

  • Nederbragt, A.J., Van Loon, A.E., Dictus, W.J., 2002. Evolutionary biology: Hedgehog crosses the snail’s midline. Nature 417, 811–812.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, C., 2001. Animal Evolution. Interrelationships of the Living Phyla, second ed. Oxford University Press, Oxford.

    Google Scholar 

  • Nilsson, D.-E., 1996. Eye ancestry: old genes for new eyes. Curr. Biol. 6, 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Niwa, N., Hiromi, Y., Okabe, M., 2004. A conserved developmental program for sensory organ formation in Drosophila melanogaster. Nat. Genet. 36, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, G., Mailhos, A., Wehr, R., Copeland, N.G., Jenkins, N.A., Gruss, P., 1995. Six3, a murine. homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–4055.

    PubMed  CAS  Google Scholar 

  • Raible, F., Arendt, D., 2004. Metazoan evolution: some animals are more equal than others. Curr. Biol. 14, R106-R108.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, H., Simeone, A., 2001. Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos. Trans. R. Soc. London B: Biol. Sci. 356, 1533–1544.

    Article  CAS  Google Scholar 

  • Rincon-Limas, D.E., Lu, C.H., Canal, I., Calleja, M., Rodriguez-Esteban, C., Izpisua-Belmonte, J.C., Botas, J., 1999. Conservation of the expression and function of apterous orthologs in Drosophila and mammals. Proc. Natl. Acad. Sci. USA 96, 2165–2170.

    Article  PubMed  CAS  Google Scholar 

  • Salvini-Plawen, L.V., 1982. On the polyphyletic origin of photoreceptors. In: Westfall, J.A. (Ed.), Visual Cells in Evolution. Raven Press, New York, pp. 137–154.

    Google Scholar 

  • Salvini-Plawen, L.V., Mayr, E., 1977. On the Evolution of Photoreceptors and Eyes. Plenum, New York.

    Google Scholar 

  • Seimiya, M., Gehring, W.J., 2000. The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development 127, 1879–1886.

    PubMed  CAS  Google Scholar 

  • Shirasaki, R., Pfaff, S.L., 2002. Transcriptional codes and the control of neuronal identity. Annu. Rev. Neurosci. 25, 251–281.

    Article  PubMed  CAS  Google Scholar 

  • Sinakevitch, I., Douglass, J.K., Scholtz, G., Loesel, R., Strausfeld, N.J., 2003. Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J. Comp. Neurol. 467, 150–172.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J.M., Holland, P.W., Graham, C.F., 1993. The zootype and the phylotypic stage. Nature 361, 490–492.

    Article  PubMed  CAS  Google Scholar 

  • Spaethe, J., Briscoe, A.D., 2004. Early duplication and functional diversification of the opsin gene family in insects. Mol. Biol. Evol. 21, 1583–1594.

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld, N.J., 1998. Crustacean-insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. Brain Behav. Evol. 52, 186–206.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, T., Holland, P.W., 2004. Amphioxus and ascidian Dmbx homeobox genes give clues to the vertebrate origins of midbrain development. Development 131, 3285–3294.

    Article  PubMed  CAS  Google Scholar 

  • Thor, S., Andersson, S.G., Tomlinson, A., Thomas, J.B., 1999. A LIM-homeodomain combinatorial code for motor-neuron pathway selection. Nature 397, 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Thor, S., Thomas, J., 2002. Motor neuron specification in worms, flies and mice: conserved and ‘lost’ mechanisms. Curr. Opin. Genet. Dev. 12, 558–564.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, J.W., Need, E., Crews, D., 2003. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301, 1714–1717.

    Article  PubMed  CAS  Google Scholar 

  • Walker, R.J., Brooks, H.L., Holden-Dye, L., 1996. Evolution and overview of classical transmitter molecules and their receptors. Parasitology 113 (Suppl.), S3-S33.

    Article  PubMed  Google Scholar 

  • Weiss, J.B., Von Ohlen, T., Mellerick, D.M., Dressler, G., Doe, C.Q., Scott, M.P., 1998. Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev. 12, 3591–3602.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlev Arendt.

Additional information

From the 46th “Phylogenetisches Symposium”, Jena, Germany, November 20–21, 2004. Theme of the symposium: “Evolutionary developmental biology—new challenges to the homology concept?”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arendt, D. Genes and homology in nervous system evolution: Comparing gene functions, expression patterns, and cell type molecular fingerprints. Theory Biosci. 124, 185–197 (2005). https://doi.org/10.1007/BF02814483

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814483

Keywords

Navigation