Skip to main content
Log in

Cainozoic ferns and their distribution

  • Articles
  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

The phytogeographic distribution of Cainozoic ferns is reported based upon a critical re-appraisal of the macrofossil and mesofossil record also taking account of evidence from a few highly diagnostic spores. Well-documented circum-Arctic Cainozoic floras show ferns (Woodwardia, Onoclea, Osmunda, Coniopteris and to a lesser extentAzolla) distributed around the pole to very high paleolatitudes. Some ferns are shared between the mid-paleolatitudes of North America and Europe as would be predicted from the distributions of other biota. Evidence for the composition of Cainozoic fern floras is minimal in some regions (e.g., Antarctica, Central and South America, Africa, India, South East Asia), so the absence of fern fossils from these areas has no biogeographical significance. Matoniaceae were abundant in the preceding Mesozoic. However, the absence of Cainozoic macrofossils, and the fact that no CainozoicMatonisporites spores areMatonia-like, indicates that Matoniaceae had attained their modern relict distribution by, or very early in, the Cainozoic. The important Mesozoic families Marattiaceae and Dipteridaceae are also not represented by Cainozoic macrofossils. They probably also showed Cainozoic restriction but spores are not sufficiently diagnostic to enable testing of this hypothesis. Other ferns, which were also important in the Mesozoic (e.g., Dicksoniaceae, Gleicheniaceae), have patchy, equivocal, or inadequately published Cainozoic records. The dispersed spore record may provide an opportunity to track Cainozoic Gleicheniaceae but this approach is not without problems. Most well-represented Cainozoic fern families, genera and subgenera show widespread Cainozoic ranges, typically with considerable range extensions over their living relatives, both onto other continents and north and south to higher paleolatitudes. These include Schizaeaceae (Lygodium, Anemia, and the extinctRuffordia), Osmundaceae (Osmunda), Pteridaceae (Acrostichum), Thelypteridaceae (Cyclosorus), Lophosoriaceae (Lophosoria), Cyatheaceae (theCnemidaria/Cyathea decurrens clade) and the heterosporous water fernAzolla (Azollaceae). A few well-represented ferns show Cainozoic distributions similar to those of the present day (e.g.,Salvinia [Salviniaceae] andCeratopteris [Pteridaceae] (the latter by the Neogene and based only on spores]) but even these had slightly broader ranges in the Cainozoic. Some Cainozoic ferns have apparently local distributions, e.g.,Blechnum dentatum (Blechnaceae) in Europe; and others are so far represented at only one or few sites, e.g.,Dennstaedtiopsis (Dennstaedtiaceae),Botrychium (Ophioglossales),Grammitis (Grammitidaceae), andMakotopteris andRumohra (Dryopteridaceae). Cainozoic fossils assigned toDryopteris (and some other dryopteroids) require revision along with those of Thelypteridaceae, the latter having high potential to provide useful paleobiogeographic evidence, at least of theCyclosorus group. Cainozoic records of Hymenophyllaceae and Polypodiaceae are here considered unconfirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alley, N. F. 1987. Middle Eocene age of the megafossil flora at Golden Grove, South Australia: preliminary report and comparison with the Maslin Bay flora. Trans. Roy. Soc. South Australia 111: 211–212.

    Google Scholar 

  • Álvarez Ramis, C. &T. Fernández Marrón. 1995. On the distribution, habitats and morphological-anatomical features of fossil rests ofAcrostichum genus. Coloquios de Paleontología, Madrid No. 47: 193–235.

    Google Scholar 

  • Anderson, J. A. R. &J. Muller. 1975. Palynological study of a Holocene peat and a Miocene coal deposit from NW Borneo. Rev. Palaeobot. Palynol. 19: 291–351.

    Google Scholar 

  • Andrews, H. N. &C. S. Pearsall. 1941. On the flora of the Frontier Formation of southeastern Wyoming. Ann. Missouri Bot. Gard. 28: 165–193.

    Google Scholar 

  • —,C. A. Arnold, E. Boureau, J. Doubinger &S. Leclercq. 1970. Traité de Paléobotanique. Vol. IV, Fasc. I. Filicophyta. Masson, Paris.

    Google Scholar 

  • Archangelsky, A., C. J. Phipps, T. N. Taylor &E. L. Taylor. 1999.Paleoazolla, a new heterosporous fern from the upper Cretaceous of Argentina. Amer. J. Bot. 86: 1200–1206.

    Google Scholar 

  • Arguijo, M. H. &E. J. Romero. 1981. Analisis bioestratigráfico de formaciones portadoras de tafofloras Terciáricas. Actas del Octoavo Congresco Geológico Argentino 4: 691–717.

    Google Scholar 

  • Arnold, C. A. &L. H. Daugherty. 1963. The fern genusAcrostichum in the Eocene Clarno Formation of Oregon. Contr. Mus. Paleontol. Univ. Michigan 18: 205–227.

    Google Scholar 

  • ——. 1964. A fossil dennstaedtioid fern from the Eocene Clarno Formation of Oregon. Contr. Mus. Paleontol. Univ. Michigan 19: 55–88.

    Google Scholar 

  • Aubry, M. P., S. Lucas &W. A. Berggren, editors. 1998. Late Paleocene-early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York.

    Google Scholar 

  • Awasthi, N., J. S. Guleria, M. Prasad &R. Srivastava. 1996. Occurrence ofAcrostichum Linn., a coastal fern in the Tertiary sediments of Kasauli, Himachal Pradesh, north-west Himalaya. Palaeobotanist 43: 83–87.

    Google Scholar 

  • Bancroft, H. 1932. A fossil cyatheoid stem from Mount Elgon, East Africa. New Phytol. 31: 241–253.

    Google Scholar 

  • Bande, M. B. 1992. The Palaeogene vegetation of peninsular India (megafossil evidence). Palaeobotanist 40: 275–284.

    Google Scholar 

  • — &U. Prakash. 1986. The Tertiary flora of South East Asia with remarks on its palaeoenvironment and phytogeography of the Indo-malayan region. Rev. Palaeobot. Palynol. 49: 203–233.

    Google Scholar 

  • Barrington, D. S. 1983.Cibotium oregonense: an Eocene tree fern stem and petioles with internal structure. Amer. J. Bot. 70: 1118–1124.

    Google Scholar 

  • Barthel, M. 1976. Farne und Cycadeen. Abh. Zentr. Geol. Inst. 26: 1–507 +atlas 91 pls.

    Google Scholar 

  • Batten, D. J. & M. E. Collinson. In press. Revision of Palaeocene species ofMinerisporites, Azolla and associated plant microfossils from the Netherlands, Belgium and the United States. Rev. Palaeobot. Palynol.

  • — &W. L. Kovach. 1990. Catalog of Mesozoic and Tertiary megaspores. Contr. Ser. Amer. Assoc. Stratigr. Palynologists 24: 1–227.

    Google Scholar 

  • —,M. E. Collinson &A. P. R. Brain. 1998. Ultrastructural interpretation of the late Cretaceous megasporeGlomerisporites pupus and its associated microspores. Amer. J. Bot. 85: 724–735.

    Google Scholar 

  • Bauzá Rullán, J. 1956. Flora Oligocenica de Son Fe (Alcudia). Bol. Soc. Hist. Nat. Baleares 2: 89–90 +pl. 6.

    Google Scholar 

  • — 1961. Contribución al conocimiento de la flora fósil de Mallorca. Estud. Geol. 17: 161–174.

    Google Scholar 

  • Berger, J.-P. 1998. “Rochette” (upper Oligocene, Swiss Molasse): a strange example of a fossil assemblage. Rev. Palaeobot. Palynol. 101: 95–110.

    Google Scholar 

  • Berry, E. W. 1922. Pliocene fossil plants from eastern Bolivia. Johns Hopkins Univ. Stud. Geol. 4: 145–192 +8 pls.

    Google Scholar 

  • — 1923. Miocene plants from southern Mexico. Proc. U.S. Natl. Mus. 62: 1–27.

    Google Scholar 

  • — 1924. The middle and upper Eocene floras of south eastern North America. Prof. Pap. U.S. Geol. Surv. 92: 1–204 +65 pls.

    Google Scholar 

  • — 1938. Tertiary flora from the Rio Pichileufo, Argentina. Special Pap. Geol. Soc. Amer. 12: 1–149 +56 pls.

    Google Scholar 

  • — 1939a. The fossil flora of Potosi, Bolivia. Johns Hopkins Univ. Stud. Geol. 13: 9–67.

    Google Scholar 

  • — 1939b. A Miocene flora from the Gorge of the Yumuri River, Matanza, Cuba. Johns Hopkins Univ. Stud. Geol. 13: 95–135 +pls. 15–17.

    Google Scholar 

  • Blackburn, D. T. 1985. Palaeobotany of the Yallourn and Morwell Coal Seams. Palaeobotanical Project—Report 3. State Electricity Commission of Victoria, Melbourne.

    Google Scholar 

  • — &I. R. K. Sluiter. 1994. The Oligo-Miocene floras of southeastern Australia. Pages 328–367.In: R. S. Hill, editor. History of the Australian vegetation: Cretaceous to Recent. Cambridge University Press, Cambridge.

    Google Scholar 

  • Boulter, M. C. &Z. Kvacek. 1989. The Palaeocene flora of the Isle of Mull. Spec. Pap. Palaeontol. 42: 1–149.

    Google Scholar 

  • —,R. N. L. B. Hubbard &Z. Kvacek. 1993. A comparison of intuitive and objective interpretations of Miocene plant assemblages from north Bohemia. Palaeogeogr. Palaeoclim. Palaeoecol. 101: 81–96.

    Google Scholar 

  • Boyd, A. 1990. The Thyra Ø Flora: towards an understanding of the climate and vegetation during the early Tertiary in the High Arctic. Rev. Palaeobot. Palynol. 62: 189–203.

    Google Scholar 

  • Braun, A. 1872. Ueber Marsilia Marioni, eine fossil Art aus der Tertiärzeit. Bot. Zeitung (Berlin) 30: 653.

    Google Scholar 

  • Brown, R. W. 1943. A climbing fern from the upper Cretaceous of Wyoming. J. Wash. Acad. Sci. 33: 141–142.

    Google Scholar 

  • — 1962. Paleocene flora of the Rocky Mountains and Great Plains. Prof. Pap. U.S. Geol. Surv. 375: 1–119 +69 pls.

    Google Scholar 

  • Brown, S. M. 1994. Migrations and evolution: computerised maps from computerised data. Pages 327–346.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.

    Google Scholar 

  • Budantsev, L. Yu. 1994. The fossil flora of the Paleogene climatic optimum in north eastern Asia. Pages 297–313.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.

    Google Scholar 

  • Buzek, C. & M. Konzalová. 1979.Salvinia megaspores (Filicinae) from the lower Miocene of the North-Bohemian Basin. Pages 117–128.In: V. Pokorny editor. Paleontologicka Konference '77—Univerzita Karlova 1978. Praha.

  • ——. 1983. A fertileLygodium from the Cypris Formation of the Cheb Basin (West Bohemia, Czechoslovakia). Cas. Miner. Geol. 28: 31–39 +4 pls.

    Google Scholar 

  • —— &Z. Kvacek. 1971. The genusSalvinia from the Tertiary of the North-Bohemian Basin. Sb. Geol. Ved. Paleontol. (Cz.) 13: 179–222 +8 pls.

    Google Scholar 

  • —,F. Holy &Z. Kvacek. 1996. Early Miocene flora of the Cypris Shale (western Bohemia). Sborn. Nár. Mus. v Praze, Rada B, Prir. Vedy. 52: 1–72.

    Google Scholar 

  • Cantrill, D. J. 1998. Early Cretaceous fern foliage from President Head, Snow Island, Antarctica. Alcheringa 22: 241–258.

    Google Scholar 

  • Carpenter, R. J. 1991. Paleovegetation and environment at Cethana, Tasmania. Ph.D. thesis, University of Tasmania. [Only Pteriophyta seen.]

  • —,R. S. Hill &G. J. Jordan. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pages 276–298.In: R. S. Hill editor. History of the Australian vegetation: Cretaceous to Recent, Cambridge University Press, Cambridge.

    Google Scholar 

  • Case, J. A. 1988. Paleogene floras from Seymour Island, Antarctic Peninsula. Mem. Geol. Soc. Amer. 169: 523–530.

    Google Scholar 

  • Cernjavska, S., E. Palamarev &A. Petkova. 1988. Micropaleobotanical and macropaleobotanical characteristics of the Paleogene sediments in Hvojna Basin (Central Rhodopes). Paleontologiya, Stratigrafiya i Litologiya, Sofia 26: 26–36.

    Google Scholar 

  • Cevallos-Ferriz, S. R. S., R. A. Stockey &K. P. Pigg. 1991. The Princeton chert: evidence for in situ aquatic plants. Rev. Palaeobot. Palynol. 70: 173–185.

    Google Scholar 

  • Chandler, M. E. J. 1955. The Schizaeaceae of the south of England in early Tertiary times. Bull. Brit. Mus. (Nat. Hist.), Geol. 2: 291–314 + pls. 32–38.

    Google Scholar 

  • — 1961. The lower Tertiary floras of southern England. I. Palaeocene floras: London Clay Flora (suppl.). Text and Atlas. British Museum (Natural History), London.

    Google Scholar 

  • — 1962. The lower Tertiary floras of southern England. II. Flora of the Pipe-Clay Series of Dorset (lower Bagshot). British Museum (Natural History). London.

    Google Scholar 

  • — 1963. The lower Tertiary floras of southern England. III. Flora of the Bournemouth Beds; The Boscombe and the Highcliff Sands. British Museum (Natural History). London.

    Google Scholar 

  • — 1964. The lower Tertiary floras of southern England. IV. A summary and survey of findings in the light of recent botanical observations. British Museum (Natural History), London.

    Google Scholar 

  • — 1965. The generic position ofOsmundites dowkeri Carruthers. Bull. Brit. Mus. (Nat. Hist.) Geol. 10: 141–161 + 12 pls.

    Google Scholar 

  • — 1968. A new Tempskya from Kent. Bull. Brit. Mus. (Nat. Hist.), Geol. 15: 171–179 + pls. 1–12.

    Google Scholar 

  • Chandrasekharam, A. 1974. Megafossil flora from the Genesee locality, Alberta, Canada. Palaeontographica Abt. B, Paläophytol. 147: 1–41 + 22 pls.

    Google Scholar 

  • Chen, F., S. Deng &K. Sun. 1997. Early CretaceousAthyrium Roth from northeastern China. Palaeobotanist 46: 117–133.

    Google Scholar 

  • Christophel, D. C., W. K. Harris &A. K. Syber. 1987. The Eocene flora of the Anglesea locality, Victoria. Alcheringa 11: 303–323.

    Google Scholar 

  • Collinson, M. E. 1978. Dispersed fern sporangia from the British Tertiary. Ann. Bot. (König & Sims) 42: 233–250.

    Google Scholar 

  • — 1980. A new multiple floatedAzolla from the Eocene of Britain with a brief review of the genus. Palaeontology 23: 213–229.

    Google Scholar 

  • — 1983a. Fossil plants of the London Clay. Field Guides to Fossils Number 1. Palaeontological Association, London.

    Google Scholar 

  • — 1983b. Palaeofloristic assemblages and palaeoecology of the lower Oligocene Bembridge Marls, Hamstead Ledge, Isle of Wight. Bot. J. Linn. Soc. 86: 177–225.

    Google Scholar 

  • — 1986a. Use of modern generic names for plant fossils. Pages. 91–104.In: R. A. Spicer & B. A. Thomas editors. Systematic and taxonomic approaches in palaeobotany. Systematics Association Special Volume 31. Oxford University Press, Oxford.

    Google Scholar 

  • — 1986b. The Felpham flora: a preliminary report. Tertiary Res. 8: 29–32.

    Google Scholar 

  • — 1990. Plant evolution and ecology during the early Cainozoic diversification. Adv. Bot. Res. 17: 1–98.

    Google Scholar 

  • — 1991. Diversification of modern heterosporous pteridophytes. Pages 119–150.In: S. Blackmore & S. H. Barnes editors. Pollen and spores. Systematics Association Special Volume No. 44. Clarendon Press, Oxford.

    Google Scholar 

  • — 1992a. Vegetational and floristic changes around the Eocene/Oligocene boundary in western and Central Europe. Pages 437–450.In: D. R. Prothero & W. A. Berggren editors. Eocene—Oligocene climatic and biotic evolution. Princeton University Press, Princeton.

    Google Scholar 

  • — 1992b. The late Cretaceous and Palaeocene history of salvinialean water ferns. Pages 121–127.In: J. Kovar-Eder editor. Palaeovegetational development in Europe and regions relevant to its floristic evolution. Museum of Natural History, Vienna.

    Google Scholar 

  • — 1996a. “What use are fossil ferns?”—20 years on: with a review of the fossil history of extant pteridophyte families and genera. Pages 349–394.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.

    Google Scholar 

  • — 1996b. Plant macrofossils from the Bracklesham Group (early & middle Eocene). Bracklesham Bay, West Sussex, England; review and significance in the context of coeval British tertiary floras. Tertiary Res. 16: 175–202.

    Google Scholar 

  • — 2000a. Cainozoic evolution of modern plant communities and vegetation. Pages 223–243.In: S. Culver & P. Rawson editors. Biotic response to global change: the last 145 million years. Cambridge University Press, Cambridge.

    Google Scholar 

  • — 2000b. Fruit and seed floras from Palaeocene/Eocene transitional strata in southern England and their palaeoenvironmental implications. GFF 122: 36–37.

    Google Scholar 

  • —. 1977. Pyritised fern rachides in the London Clay. Tertiary Res. 1: 109–113.

    Google Scholar 

  • Conant, D. S., L. A. Raubeson, D. K. Attwood, S. Perera, E. A. Zimmer, J. Sweere &D. B. Stein. 1996. Phylogenetic and evolutionary implications of combined analysis of DNA and morphology in the Cyatheaceae. Pages 231–248.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Grane, P. R. &S. Lidgard. 1990. Angiosperm radiation and patterns of Cretaceous palynological diversity. Pages 377–407.In: P. D. Taylor & G. P. Larwood editors. Major evolutionary radiations. Systematics Association Special Volume 42. Clarendon Press, Oxford.

    Google Scholar 

  • Cranfill, R. 1998. Systematics, phylogeny and biogeography of the genusWoodwardia (Blechnaceae). Amer. J. Bot. 85 (6 suppl.): 100.

    Google Scholar 

  • Cranfill, R. 2000. Monograph of the genusWoodwardia (blechnaceae). Ph.D. dissertation. University of California at Berkeley. [Not seen.]

  • Daghlian, C. P. &W. L. Crepet. 1983. Oak catkins, leaves and fruits from the Oligocene Catahoula Formation and their evolutionary significance. Amer. J. Bot. 70: 639–649.

    Google Scholar 

  • Davies-Vollum, S. &S. Wing. 1998. Sedimentological, taphonomic, and climatic aspects of Eocene swamp deposits (Willwood formation, Bighorn Basin, Wyoming). Palaios 13: 28–40.

    Google Scholar 

  • Deng, S. 1997.Eogonocormus—a new early Cretaceous fern of Hymenophyllaceae from China. Austral. Syst. Bot. 10: 59–67.

    Google Scholar 

  • Dettmann, M. E. 1963. Upper Mesozoic microfloras from south-eastern Australia. Proc. Roy. Soc. Victoria n.s. 77: 1–148.

    Google Scholar 

  • — 1986. Significance of the Cretaceous-Tertiary spore genusCyatheacidites in tracing the origin and migration ofLophosoria (Filicopsida). Spec. Pap. Palaeontol. 35: 63–94.

    Google Scholar 

  • —. 1991. Spore morphology ofAnemia, Mohria andCeratopteris (Filicales). Amer. J. Bot. 78: 303–325.

    Google Scholar 

  • —&—. 1992. Phylogeny and biogeography ofRuffordia, Mohria andAnemia (Schizaeaceae) andCeratopteris (Pteridaceae): evidence from in situ and dispersed spores. Alcheringa 16: 269–314.

    Google Scholar 

  • Doktor, M., A. Gazdzicki, A. Jerzmanska, S. J. Porebski &E. Zastawniak. 1996. A plant and fish assemblage from the Eocene la Meseta Formation of Seymour Island (Antarctic Peninsula) and its environmental implications. Palaeontol. Polon. 55: 127–146.

    Google Scholar 

  • Dorofee, P. I. 1981. On the taxonomy of the Tertiary Marsileaceae. Bot. Zhurn. (Moscow & Leningrad) 66: 792–801.

    Google Scholar 

  • Dusén, P. 1908. Die Tertiäre Flora der Seymour-Insel. Wiss. Erg. Schwed. Sudpolar-Exp. 3(3): 1–27 +4 pls.

    Google Scholar 

  • Elsik, W. C. 1968a. Palynology of a Paleocene Rockdale lignite, Milam County, Texas, I. Pollen & Spores 10: 263–314, + 15 pls.

    Google Scholar 

  • — 1968b. Palynology of a Paleocene Rockdale lignite, Milam County, Texas. II. Morphology and taxonomy—end. Pollen & Spores 10: 599–664 + 29 pls.

    Google Scholar 

  • Endo, S. 1968. The flora from the Eocene Woodwardia Formation, Ishikari Coalfield, Hokkaido, Japan. Bull. Natl. Sci. Mus. Tokyo 11: 411–449 + 26 pls.

    Google Scholar 

  • Evitt, W. R. 1973. MaastrichtianAquilapollenites in Texas, Maryland and New Jersey. Geosci. & Man. 7: 31–38.

    Google Scholar 

  • Farley, M. B. 1990. Vegetation distribution across the early eocene depositional landscape from palynological analysis. Palaeogeogr., Palaeoclimatol., Palaeoecol. 79: 11–27.

    Google Scholar 

  • Fedotov, V. V. 1970. New species of aspidiaceous and polypodiaceous ferns with sporangia from the Paleogene of the Zeya-Bureya depression. Palaeontol. J. 4: 539–546.

    Google Scholar 

  • Florin, R. 1940. Zur kenntnis einiger fossiles Salvinia-arten und der früheren geographischen verbreitung der Gattung. Svensk Bot. Tidsk. 34: 265–292 + pls. 2–3.

    Google Scholar 

  • Fot'janova, L. J. 1963. On the water fernSalvinia from the middle Miocene of Sakhalin. Palaeontol. J. 2: 126–133.

    Google Scholar 

  • Frankenhäuser, H., &V. Wilde. 1993. Farne aus der mitteleozänen Maarfüllung von Eckfeld bei Manderscheid in der Eifel. Mainzer Naturwiss. Archiv, Beiheft. 31: 149–167.

    Google Scholar 

  • Frederiksen, N. O. 1988. Sporomorph biostratigraphy, floral changes and paleoclimatology, Eocene and earliest Oligocene of the eastern Gulf Coast. Prof. Pap. U.S. Geol. Surv. 1448: 1–68 + 16 pls.

    Google Scholar 

  • Galtier, J. &T. L. Phillips. 1996. Structure and evolutionary significance of Palaeozoic ferns. Pages 417–433.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Gandolfo, M. A., K. C. Nixon, W. L. Crepet &G. E. Ratcliffe. 1997. A new fossil assignable to the Gleicheniaceae from the late Cretaceous sediments of New Jersey. Amer. J. Bot. 84: 483–493.

    Google Scholar 

  • Gardner, J. S. 1886. Eocene ferns from the basalts of Ireland and Scotland. J. Linn. Soc. Bot. 25: 655–669 + pl. 26.

    Google Scholar 

  • Gardner, J. S. & C. B. Ettingshausen. 1879–1882. A monograph of the British Eocene Flora. Vol. I Filices. Parts I–III. Monographs of the Palaeontographical Society, London.

  • Gill, E. M. &K. M. McWhae. 1959. Tertiary fossil ferns from Victoria, Australia. Memoirs of the National Museum of Victoria 24: 45–50.

    Google Scholar 

  • Golovneva, L. B. 1995. Environmental changes and pattern of floral evolution during the Cretaceous Tertiary transition in north-eastern Asia. Paleontol. J. 29(2A): 36–49.

    Google Scholar 

  • — 1998. Cretaceous floral evolution in northeastern Russia. Paleontol. J. 32(6): 633–641.

    Google Scholar 

  • Gomez, L. D. 1982.Grammitis succinea, the firstNew World fern found in amber. Amer. Fern J. 72: 49–52.

    Google Scholar 

  • Graham, A. 1965. The Sucker Creek and Trout Creek Miocene floras of southeastern Oregon. Kent State Univ. Bull., Res. Ser. 9. [Not seen]

  • — 1993. Contribution toward a Tertiary palynostratigraphy for Jamaica: the status of Tertiary palaeobotanical studies in northern Latin America and preliminary analysis of the Guys Hill Member (Chapleton Formation, middle Eocene) of Jamaica. Mem. Geol. Soc. Amer. 182: 443–461.

    Google Scholar 

  • Greenwood, D. R. &J. F. Basinger. 1993. Stratigraphy and floristics of Eocene swamp forests from Axel Heiberg Island, Canadian Arctic Archipelago. Canad. J. Earth Sci. 30: 1914–1923.

    Google Scholar 

  • —&—. 1993. The paleoecology of highlatitude Eocene swamp forests from Axel Heiberg Island, Canadian High Arctic. Rev. Palaeobot. Palynol. 81: 83–97.

    Google Scholar 

  • —. 2000. Victorian Paleogene and Neogene macrofloras: a conspectus. Proc. Roy. Soc. Victoria 112: 65–92.

    Google Scholar 

  • Guleria, J. S. 1992. Neogene vegetation of peninsular India. Palaeobotanist 40: 285–311.

    Google Scholar 

  • Guo, S. 1985. Preliminary interpretation of Tertiary climate by using megafossil floras in China. Palaeontologia Cathayana 2: 169–175.

    Google Scholar 

  • — 1990. A brief review of megaflora successions and climatic changes of the Cretaceous and early Tertiary in China. Pages 23–38.In: E. Knobloch & Z. Kvacek editors. Proceedings of the Symposium Palaeofloristic and Palaeoclimatic Changes in the Cretaceous and Tertiary. Geological Survey Publisher. Prague.

    Google Scholar 

  • Hably, L. 1994. Egerian plant fossils from Pomáz, Hungary, Fragm. Mineralog. Palaeontol., Budapest 17: 5–70.

    Google Scholar 

  • Halle, T. G. 1940. A fossil fertileLygodium from the Tertiary of South Chile. Svensk Bot. Tidskr. 34: 257–264.

    Google Scholar 

  • Harrington, G. J. 1999. North American palynofloral dynamics in the late Palaeocene to early Eocene. Ph.D. thesis, University of Sheffield.

  • Harris, W. K. 1971. Tertiary stratigraphic palynology. Pages 67–87.In: H. Wopfner & J. G. Douglas editors. The Otway Basin of Australia. Special Bulletin, Geological Surveys of South Australia and Victoria.

  • Hasebe, M., T. Omori, M. Nakazawa, T. Sano, M. Kato &K. Iwatsuki. 1994.rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc. Natl. Acad. Sci. U.S.A. 91: 5730–5734.

    PubMed  CAS  Google Scholar 

  • —————&—. 1995. Fern phylogeny based onrbcL nucleotide sequences. Amer. Fern J. 85: 134–181.

    Google Scholar 

  • Hennipman, E. 1996. Scientific consensus classification of Pteridophyta. Pages 191–202.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens. Kew.

    Google Scholar 

  • Herbst, R., L. M. Anzotegui &G. Jalfin. 1987. Estratigrafia, paleoambientes y dos especes deSalvinia Adanson (Filicopsida), del Mioceno superior de Salta, Argentina. Facena Corrientes Argentina 7: 15–42.

    Google Scholar 

  • Herendeen, P. S. &J. E. Skog. 1998.Gléichenia chaloneri—a new fossil fern from the lower Cretaceous (Albian) of England. Int. J. Pl. Sci. 159: 870–879.

    Google Scholar 

  • Herman, A. B. 1993. Stages and cycles in the late Cretaceous floral changes of the Anadyr'-Koryak subregion (northeast Russia) and their connection with climate changes. Stratigraphy and Geological Correlation 1: 77–87.

    Google Scholar 

  • — 1994. A review of late Cretaceous floras and climates of Arctic Russia. Pages 127–149.In M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag. Berlin.

    Google Scholar 

  • —. 1995. Latest Cretaceous flora of north-eastern Russia and the “Terminal Cretaceous Event” in the Arctic. Paleontol. J. 29(2A): 22–35.

    Google Scholar 

  • —&—. 1997. The Koryak flora: did the early Tertiary deciduous flora begin in the Maastrichtian of north-eastern Russia? Meded. Nederlands Inst. Toegepaste Geowetenschappen TNO (Proc. 4th EPPC: The Koryak Flora): 58: 87–92.

    Google Scholar 

  • Hickey, L. J. 1977. Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North Dakota. Mem. Geol. Soc. Amer. 150: 1–181 + 55 pls.

    Google Scholar 

  • Hill, C. R. &J. M. Camus. 1986. Evolutionary cladistics of marattialean ferns. Bull. Brit. Mus. (Nat. Hist.) Bot. 14: 219–300.

    Google Scholar 

  • Hill, R. S. 1982. The Eocene megafossil flora of Nerriga, New South Wales, Australia. Palaeontographica Abt. B, Paläophytol. 181: 44–77.

    Google Scholar 

  • — editor. 1994. History of the Australian vegetation: Cretaceous to Recent. Cambridge University Press. Cambridge.

    Google Scholar 

  • —. 1998. The fossil record of ferns and fern allies in Australia. Pages 29–35.In: A. E. Orchard editor. Flora of Australia. Vol. 48: Ferns, gymnosperms, and allied groups. ABRS/CSIRO, Melbourne.

    Google Scholar 

  • —. 1983. Reconstruction of the Oligocene vegetation at Pioneer, northeast Tasmania. Alcheringa 7: 281–299.

    Google Scholar 

  • Hoffman, G. L. &R. A. Stockey. 1994. Sporophytes, megaspores and massulae ofAzolla stanleyi from the Paleocene Joffre Bridge locality, Alberta. Canad. J. Bot. 72: 301–308.

    Google Scholar 

  • —&—. 1994. Geological setting and paleobotany of the Joffre Bridge Roadcut fossil locality (late Paleocene), Red Deer Valley, Alberta. Canad. J. Earth Sci. 36: 2073–2084.

    Google Scholar 

  • Hollick, A. 1928. Paleobotany of Porto Rico. Pages 177–393.In: Scientific Survey of Porto Rico and the Virgin Islands. Vol. 7, Part 3. New York Academy of Sciences, New York.

    Google Scholar 

  • Holttum, R. E. 1957. Morphology, growth-habit and classification in the family Gleicheniaceae. Phytomorphology 7: 168–184.

    Google Scholar 

  • Hooghiemstra, H. 1984. Vegetational and climatic history of the High Plain of Bogota, Colombia: a continuous record of the last 3.5 million years. Diss. Bot. 79: 1–280.

    Google Scholar 

  • Hooker, J. J. 1998. Mammalian faunal change across the Paleocene-Eocene transition in Europe. Pages 428–450.In: M. P. Aubry, S. Lucas & W. A. Berggren editor. Late Paleocene-early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press. New York.

    Google Scholar 

  • Hubbard, R. N. L. B. &Z. Kvacek 1998. Reconstruction of a Czech early Miocene vegetation. Proc. Geol. Assoc. 109: 33–50.

    Google Scholar 

  • Hurnik, S. 1978. Die fossilen Arten der gattung Woodwardia Smith, 1793 und ihre vertretung im Nordböhmischen Tertiär. Sborn. Nár. Mus. v Praze, Rada B., Prir. Vedy 32: 15–46 + 3 pls.

    Google Scholar 

  • Huzioka, K. &E. Takahasi. 1970. The Eocene flora of the Ube coal-field, southwest Honshu, Japan. J. Mining Coll. Akita Univ. Ser. A, Mining Geol., IV(5): 1–88 + 21 pls.

    Google Scholar 

  • Iljinskaja, I. A. &G. P. Pneva. 1984. Paporotniki oligotsenovoi flory Gory Ashutas v Kazakhstane. Bot. Zh. 69: 595–604. [In Russian]

    Google Scholar 

  • Jansonius, J. & L. V. Hills. 1976 (and supplements to 1999). Genera file of fossil spores. Special publication of the Department of Geology, University of Calgary.

  • Jerzykiewicz, T. &A. R. Sweet. 1986. The Cretaceous-Tertiary boundary in the central Alberta foothills. I. Stratigraphy. Canad. J. Earth Sci. 23: 1356–1374.

    Google Scholar 

  • Jolley, D. W. 1997. Palaeosurface palynofloras of the Skye lava field and the age of the British Tertiary volcanic province. Pages 67–94.In: M. Widdowson editor. Palaeosurfaces: recognition, reconstruction and palaeoenvironmental interpretation. Special Publication 120. Geological Society of London, London.

    Google Scholar 

  • Jordan, G. J., M. K. Macphail &R. S. Hill. 1996. A fertile pinnule fragment with spores ofDicksonia from Oligocene sediments in Tasmania. Rev. Palaeobot. Palynol. 92: 245–252.

    Google Scholar 

  • Kempf, E. G. 1971. Elektronenmikroskopie der sporodermis von mega- und mikrosporen der pteridophyten-gattungSalvinia aus dem Tertiär und Quar-tär Deutschlands. Palaeontographica Abt. B. Paläophytol. 136: 47–70.

    Google Scholar 

  • — 1993. Hydropteriden-Floren als Zeitmarken im Rheinischen Braunkohlen-Tertiär. Sonderveröffentlichungen Geol. Inst. Univ. Köln 70: 527–596.

    Google Scholar 

  • Knobloch, E. &Z. Kvacek. 1976. Miozäne Blätterfloren vom Westrand der Böhmischen Masse. Rozpr. Ústredniho Ústavu Geol. 42: 1–130.

    Google Scholar 

  • Knobloch, E., M. Konzalova & Z. Kvacek. 1996. Die Obereozäne Flora der Staré Sedlo-Schichtenfolge in Böhmen (Mitteleuropa). Rozprovy Ceského Geologickeho Ústavu. Vol. 49.

  • Knowlton, F. H.. 1899. Fossil flora of the Yellowstone National Park. U.S. Geol. Surv. Monogr. 32: 651–791.

    Google Scholar 

  • —. 1930. The flora of the Denver and associated Formations of Colorado. Prof. Pap. U.S. Geol. Surv. 155: 1–142 + 59 pls.

    Google Scholar 

  • Koch, B. E. 1963. Fossil plants from the lower Paleocene of the Agatdalen (Angmartussut) area, central Nugssuaq Peninsula, northwest Greenland. Meddel. Grønland 172: 1–120 + 55 pls.

    Google Scholar 

  • Kovach, W. L. &D. J. Batten. 1989. Worldwide stratigraphic occurrences of Mesozoic and Tertiary megaspores. Palynology 13: 247–277.

    Google Scholar 

  • Kovar-Eder, J., R. Givulescu, L. Hably, Z. Kvacek, D. Mihajlovic, J. Teslenko, H. Walther &E. Zastawniak. 1994. Floristic changes in the areas surrounding the Paratethys during Neogene time. Pages 347–369.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.

    Google Scholar 

  • Kramer, K. U. &P. S. Green editors. 1990. The families and genera of vascular plants. Vol. 1: Pteridophytes and Gymnosperms. Springer-Verlag, Berlin.

    Google Scholar 

  • Kräusel, R.. 1929. Fossile Pflanzen aus dem Tertiär von Süd-Sumatra. Verh. Geol.-Mijnb. genootschap voor Nederland en Koloniën, Geol. Ser. 9: 1–47.

    Google Scholar 

  • Kurmann, M. H. &T. N. Taylor. 1989. Sporoderm ultrastructure ofLophosoria andCyatheacidites (Filicopsida): systematic and evolutionary implications. Pl. Syst. Evol. 157: 85–94.

    Google Scholar 

  • Kuyl, O. S., J. Muller &H. Th. Waterblok. 1955. The application of palynology to oil geology with special reference to western Venezuela. Geol. & Mijnb. no. 3, n.s. 17: 49–76.

    Google Scholar 

  • Kvacek, Z. 1994. Connecting links between the Arctic Palaeogene and European Tertiary floras. Pages 251–266.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.

    Google Scholar 

  • — 1998. Bílina: a window on early Miocene marshland environments. Rev. Palaeobot. Palynol. 101: 111–123.

    Google Scholar 

  • — &L. Hably. 1991. Notes on the Egerian stratotype flora at Eger (Wind brickyard), Hungary, upper Oligocene. Ann. Hist.-Nat. Mus. Natl. Hung. 83: 49–82.

    Google Scholar 

  • — &S. R. Manchester. 1999.Eostangeria Barthel (extinct Cycadales) from the Palaeogene of western North America and Europe. Int. J. Pl. Sci. 160: 621–629.

    Google Scholar 

  • — &S. B. Manum. 1993. Ferns in the Spitsbergen Palaeogene. Palaeontographica Abt. B. Paläophytol. 230: 169–181.

    Google Scholar 

  • — &H. Walther. 1998. The Oligocene volcanic flora of Kundratice near Litomerice, Ceske Stredohori volcanic complex (Czech republic)—a review. Sborn. Nár. Mus. v Praze, Rada B, Prir. Vedy 54: 1–42.

    Google Scholar 

  • Lamotte, R. S. 1952. Catalogue of the Cenozoic plants of North America through 1950. Mem. Geol. Soc. Amer. 51: 1–381.

    Google Scholar 

  • Lancucka-Srodoniowa, M. 1958.Salvinia andAzolla in the Miocene of Poland. Acta Biol. Cracov., Ser. Bot. 1: 15–23.

    Google Scholar 

  • Lantz, T. C., G. W. Rothwell &R. A. Stockey. 1999. Conantiopteris schuchmanii, gen. et sp. nov., and the role of fossils in resolving the phylogeny of Cyatheaceae s.l. J. Pl. Res. 112: 361–381.

    Google Scholar 

  • Lavrenko, O. D. &L. I. Fot'janova. 1994. Some early Palaeogene species from western Kamtchatka. Pages 315–325.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.

    Google Scholar 

  • Lelono, E. B. 2000. Palynological study of the Eocene Nanggulan Formation, Central Java, Indonesia. Ph.D. thesis. University of London.

  • Lerbekmo, J. F., A. R. Sweet &R. M. St. Louis. 1987. The relationship between the iridium anomaly and palynological floral events at three Cretaceous—Tertiary boundary localities in western Canada. Bull. Geol. Soc. Amer. 99: 325–330.

    CAS  Google Scholar 

  • Lidgard, S. &P. R. Crane. 1990. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. Paleobiology 16: 77–93.

    Google Scholar 

  • Lupia, R., S. Lidgard &P. R. Crane. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25: 305–340.

    Google Scholar 

  • MacGinitie, H. D. 1969. The Eocene Green River flora of northwestern Colorado and northeastern Utah. Univ. Calif. Publ. Geol. Sci. 83: 1–203.

    Google Scholar 

  • — 1974. An early middle Eocene flora from the Yellowstone-Absaroka volcanic Province. north western Wind River Basin, Wyoming. Univ. Calif. Publ. Geol. Sci. 108: 1–103.

    Google Scholar 

  • Machin, J. 1971. Plant microfossils from Tertiary deposits of the Isle of Wight. New Phytol. 70: 851–872.

    Google Scholar 

  • Macphail, M. K., N. F. Alley, E. M. Truswell &I. R. K. Sluiter. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pages 189–261.In: R. S. Hill editor. History of the Australian vegetation: Cretaceous to Recent. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mai, D. H. 1985. Entwicklung der wasser- und Sumpfpflanzen-Gesellschaften Europas von der Kreid bis ins Quartär. Flora 176: 449–511.

    Google Scholar 

  • — 1995. Tertiäre Vegetationsgeschichte Europas. Gustav Fischer, Jena.

    Google Scholar 

  • — &H. Walther. 1978. Die Floren der Haselbacher Serie im Weiselster-Becken (Bezirk Leipzig, DDR). Abh. Staatl. Mus. Miner. Geol. Dresd. 28: 1–200 + pls. 1–102.

    Google Scholar 

  • ——. 1985. Die obereozänen Floren des Weisselster-Beckens und seiner Randgebiete. Abh. Staatl. Mus. Miner. geol. Dresd. 33: 1–260.

    Google Scholar 

  • ——. 1991. Die Oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. Adh. Staatl. Mus. Miner. geol. Dresd. 38: 1–230 +48 pls. + 1 map.

    Google Scholar 

  • Manchester, S. R. 1994. Fruits and seeds of the middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontogr. Amer. 58 1–205.

    Google Scholar 

  • — 1999. Biogeographical relationships of North American Tertiary floras. Ann. Missouri Bot. Gard. 86: 472–522.

    Google Scholar 

  • — &M. S. Zavada. 1987.Lygodium foliage with intact sorophores from the Eocene of Wyoming. Bot. Gaz. 148: 392–399.

    Google Scholar 

  • —,M. E. Collinson &K. Goth. 1994. Fruits of the Juglandaceae from the Eocene of Messel, Germany and implications for early Tertiary phytogeographic exchange between Europe and western North America. Int. J. Pl. Sci. 155: 388–394.

    Google Scholar 

  • Martin, H. A. 1979. Stratigraphic palynology of the Mooki Valley, New South Wales. J. Proc. Roy. Soc. N.S.W. 112: 71–78.

    Google Scholar 

  • — 1980. Stratigraphic palynology from shallow bores in the Namoi River and Gwydir River Valleys, North Central New South Wales. J. Proc. Roy. Soc. N.S.W. 113: 81–87.

    Google Scholar 

  • — 1981. Stratigraphic palynology of the Casterleigh River Valley, New South Wales. J. Proc. Roy. Soc. N.S.W. 114: 77–84.

    Google Scholar 

  • Matsuo, H. 1963. The Notonakajima flora of Noto Peninsular. Pages 219–243 +pls. 41–56.In: Tertiary floras of Japan, Miocene floras. The collaborating Association to commemorate the 80th anniversary of the Geological Survey of Japan, Geological Survey of Japan. Tokyo.

    Google Scholar 

  • May, F. E. 1972 A survey from several coal-bearing horizons of Utah. Utah Geol. Min. Surv. Monogr. 3: 397–542 + 7 figs. + 32 pls.

    Google Scholar 

  • McIver, E. E. &J. F. Basinger. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontogr. Canad. 10: 1–167.

    Google Scholar 

  • ——. 1993. Early Tertiary floral evolution in the Canadian High Arctic. Ann. Missouri Bot. Gard. 86: 523–545.

    Google Scholar 

  • McLean, D. M. 1968. Reworked palynomorphs in the Paleocene Naheola Formation of southwest Alabama. J. Paleontol. 42: 1478–1485.

    Google Scholar 

  • Menendez, C. A. 1961. Estípite petrificado de una nueva Cyatheaceae del Terciario de Neuquén. Bol. Soc. Argent. Bot., 9: 331–358.

    Google Scholar 

  • Mihajlovic, D. 1990. Paleogene flora of Yugoslavia (a review). Pages 141–146.In: E. Knobloch & Z. Kvacek editors. Proceedings of the Symposium Palaeofloristic and Palaeoclimatic Changes in the Cretaceous and Tertiary. Geological Survey Publisher, Prague.

    Google Scholar 

  • Miller, C. N. 1967. Evolution of the ferns genusOsmunda. Contr. Mus. Paleontol. Univ. Michigan 21: 139–203 + 4 pls.

    Google Scholar 

  • — 1971. Evolution of the fern family Osmundaceae based on anatomical studies. Contr. Mus. Paleontol. Univ. Michigan 23: 105–169.

    Google Scholar 

  • — 1982.Osmunda wehrii, a new species based on petrified rhizomes from the Miocene of Washington. Amer. J. Bot. 69: 116–121.

    Google Scholar 

  • Mohr, B. A. R. &D. B. Lazarus. 1994. Paleobiogeographic distribution ofKuylisporites and its possible relationship to the extant fern genusCnemidaria (Cyatheaceae). Ann. Missouri Bot. Gard. 81: 758–767.

    Google Scholar 

  • Morley, R. J. 1998. Palynological evidence for tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. Pages 211–234.In: R. Hall & J. D. Holloway editors. Biogeography and geological evolution of SE Asia. Backhuys, Leiden.

    Google Scholar 

  • — 2000. Origin and evolution of tropical rainforests. John Wiley, Chichester.

    Google Scholar 

  • Muller, J. 1968. Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous-Eocene) in Sarawak. Micropalaeontology 14: 1–37.

    Google Scholar 

  • Nambudiri, E. M. V. &S. Chitaley. 1991. FossilSalvinia andAzolla from the Deccan Intertrappean Beds of India. Rev. Palaeobot. Palynol. 69: 325–336.

    Google Scholar 

  • Nichols, D. J. &A. R. Sweet. 1993. Biostratigraphy of upper Cretaceous non-marine palynofloras in a North-South Transect of the western Interior Basin. Geol. Assoc. Canada Spec. Pap. 39: 539–584.

    Google Scholar 

  • Oishi, S. &K. Huzioka. 1941a. Studies on the Cenozoic plants of Hokkaido and Karahuto. I. Ferns from the Woodwardia sandstone of Hokkaido. J. Fac. Sci. Hokkaido Imp. Univ., Ser. 4, Geol. 6: 177–192 + pls. 39–42.

    Google Scholar 

  • ——. 1941b. Studies on the Cenozoic plants of Hokkaido and Karahuto. II.Salvinia natans Allioni Fossilis subsp. nov. from Karahuto andS. formosa Heer from Hokkaido. J. Fac. Sci. Hokkaido Imp. Univ., Ser. 4, Geol. 6: 193–199 + pl. 44.

    Google Scholar 

  • Pabst, M. B. 1968. The flora of the Chuckanut Formation of northwestern Washington. The Equisetales, Filicales, and Coniferales. Univ. Calif. Publ. Geol. Sci. 76: 1–60.

    Google Scholar 

  • Palamarev, E. H. &A. S. Petkova. 1987. Les fossiles de Bulgarie VIII. 1. La Macroflore du Sarmatien. Academie Bulgare des Sciences, Sofia. [In Russian with French summary]

    Google Scholar 

  • ——. 1990. The Paleogene macroflora of the Rhodopes region. I. Polpodiophyta-Polypodiopsida. Fitologiya 38: 3–21. [In Russian, with English summary]

    Google Scholar 

  • — &K. Usunova. 1992. Beitrage zur Entwicklung der Cycadeen in der Tertiarflora Europas. Courier Forschungsinst. Senckenberg 147: 287–293.

    Google Scholar 

  • Petrescu, I., R. Givulescu &O. Barbu. 1995. The Oligocene macro- and microflora from Cornesti-Aghires (NW of Romania)—general view. I. Ferns and conifers. Rev. de Paléobiol. 14: 209–219.

    Google Scholar 

  • Petriella, B. &S. Archangelsky. 1975. Vegetación y ambiente en el palaeoceno de Chubut. Actas 1 Congreso Argentino de Palaeontología y Bioestratigrafía Tucumán 2: 257–270.

    Google Scholar 

  • Phipps, C. J., T. N. Taylor, E. L. Taylor, N. R. Cúneo, L. D. Boucher &X. Yao. 1998.Osmunda (Osmundaceae) from the Triassic of Antarctica: an example of evolutionary stasis. Amer. J. Bot. 85: 888–895.

    Google Scholar 

  • Pigg, K. B. &R. A. Stockey. 1996. The significance of the Princeton Chert permineralized flora to the middle Eocene upland biota of the Okanagan Highland. Washington Geol. 24: 32–36.

    Google Scholar 

  • — &M. Tcherepova. 2000. Taxonomic, phytogeographic and ecological significance of the Yakima Canyon flora (middle Miocene, Washington State, USA). Amer. J. Bot. 87(6 suppl.): 74.

    Google Scholar 

  • Playford, G. 1982. Neogene palynomorphs from the Huon Peninsula, Papua New Guinea. Palynology 6: 29–54.

    Google Scholar 

  • Pocknall, D. T. 1985. Palynology of the Waikato Coal Measures (late Eocene to late Oligocene) from the Raglan area, North Island, New Zealand. New Zealand J. Geol. Geophys. 28: 329–349.

    Google Scholar 

  • — 1989 Late Eocene to early Miocene vegetation and climate history of New Zealand. J. Roy. Soc. New Zealand 19: 1–18.

    Google Scholar 

  • Poinar, G. O., Jr. 1992. Life in amber. Stanford University Press, Stanford.

    Google Scholar 

  • Pole, M. S. 1992. Early Miocene flora of the Manuherikia Group, New Zealand. 1. Ferns. J. Roy. Soc. New Zealand 22: 279–286.

    Google Scholar 

  • — 1993. Early Miocene flora of the Manuherikia Group, New Zealand. 10. Palaeoecology and stratigraphy. J. Roy. Soc. New Zealand 23: 393–426.

    Google Scholar 

  • — 1997. Palaeocene plant macrofossils from Kakahu, South Canterbury, New Zealand. J. Roy. Soc. New Zealand 27: 371–400.

    Google Scholar 

  • —,R. S. Hill, N. Green &M. K. Macphail. 1993. The Oligocene Berwick Quarry flora—rainforest in a drying environment. Austral. Syst. Bot. 6: 399–427.

    Google Scholar 

  • Pons, D., 1965. Sur des empreintes foliaires de Cyatheacées fossiles de Colombie. Bol. Geol. Fac. Petroleos Univ. Industriad de Santander 20: 5–24 + 10 figs. + 2 pls.

    Google Scholar 

  • Poole, I.. 1992. Pyritised twigs from the London Clay, Eocene, of Britain. Tertiary Res. 13: 71–85.

    Google Scholar 

  • — &C. N. Page. 2000. A fossil fern indicator of epiphytism in a Tertiary flora. New Phytol. 148: 117–125.

    Google Scholar 

  • Potonié, R. 1956. Synopsis der Gattungen der Sporae dispersae. 1. Sporites. Beih. Geol. Jahrb. 23: 1–103.

    Google Scholar 

  • Prasad, M., 1991. Fossil fernGoniopteris prolifera Presl from the Siwalik sediments near Nainital, North India. Curr. Sci. 60: 655–656.

    Google Scholar 

  • Pryer, K. 1999. Phylogeny of marsileaceous ferns and relationships of the fossilHydropteris pinnata reconsidered. Int. J. Pl. Sci. 160: 931–954.

    Google Scholar 

  • —,A. R. Smith &J. E. Skog. 1995. Phylogenetic relationships of extant ferns based on evidence from morphology andrbcL sequences. Amer. Fern J. 85: 205–282.

    Google Scholar 

  • Raine, J. I., 1984. Outline of a palynological zonation of Cretaceous to Paleogene terrestrial sediments in west coast region, South Island, New Zealand. New Zealand Geol. Surv. Rep. 109: 1–82.

    Google Scholar 

  • Rakosi, L. 1966 Pollen analysis of the sedimentary record of boring szentendre 2. Magyar Allami Földt. Intéz. Évi Jel. 1964: 377–387 + 1 fig. + 2 pls.

    Google Scholar 

  • Ratcliffe, G. E., M. A. Gandolfo, K. C. Nixon &W. L. Crepet. 1995. Sorophores of the genusLygodium Sw. (Schizaeaceae) from the late Cretaceous of New Jersey. Amer. J. Bot. 82: 90–91.

    Google Scholar 

  • Regali, M. S., N. Uesugui &A. S. Santos. 1974. Palinologia dos sedimentos Meso-Cenozoicos do Brazil 1–2. Petrobras Bol. Tec. Rio de Janeiro 17(3–4): 177–301 + 7 figs. + 25 pls.

    Google Scholar 

  • Ribbins, M. M. &M. E. Collinson. 1978. Further notes on pyritised fern rachides from the London Clay. Tertiary Res. 2: 47–50.

    Google Scholar 

  • Romero, E. J., 1986. Paleogene phytogeography and climatology of South America. Ann. Missouri Bot. Gard. 73: 449–461.

    Google Scholar 

  • — 1993. South American paleofloras. Pages 62–85.In: P. Goldblatt editor. Biological relationships between Africa and South America. Yale University Press, Hartford.

    Google Scholar 

  • Rothwell, G. W., 1994. Phylogenetic relationships among ferns and gymnosperms—an overview. J. Pl. Res. 107: 411–416.

    Google Scholar 

  • — 1996. Phylogenetic relationships of ferns: a palaeobotanical perspective. Pages 395–404.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.

    Google Scholar 

  • — &R. A. Stockey. 1989. Fossil Ophioglossaceae in the Paleocene of western North America. Amer. J. Bot. 76: 637–644.

    Google Scholar 

  • —— 1991.Onoclea sensibilis in the Paleocene of North America, a dramatic example of structural and ecological stasis. Rev. Palaeobot Palynol. 70: 113–124.

    Google Scholar 

  • —— 1994. The role ofHydropteris pinnata gen. et sp. nov. in reconstructing the cladistics of heterosporous ferns. Amer. J. Bot. 81: 479–492.

    Google Scholar 

  • —— &H. Nishida. 1994. Filicaleans of the middle Eocene Princeton chert: I. A dryopteroid species. Amer. J. Bot. 81 (6 suppl.): 101–102.

    Google Scholar 

  • —,E. E. Arnone &K. B. Pigg. 1996. Miocene ferns from central Washington State: anatomy and systematics. Amer. J. Bot. 83(6 suppl.): 131.

    Google Scholar 

  • Rozefelds, A. C., D. C. Christophel &N. F. Alley. 1992. Tertiary occurrence of the fernLygodium (Schizaeaceae) in Australia and New Zealand. Mem. Queensland Mus. 32: 203–222.

    Google Scholar 

  • Sah, S. C. D.. 1967. Palynology of an upper Neogene profile from Rusizi Valley—Burundi. Ann. Mus. Roy. Afrique Centr., Sci. Geol. 57: 1–173 + 54 figs. + 1 diagram + 2 tabs. + 13 pls.

    Google Scholar 

  • Saporta, G. de 1868. Prodrome d'une flore fossile des travertins anciens de Sézanne. Mém. Soc. Géol. France 2nd ser., Vol. 8 Mem. no. 3: 289–437 + 15 pls.

    Google Scholar 

  • Saunders, R. M. K. &K. Fowler. 1993. The supraspecific taxonomy and evolution of the fern genusAzolla (Azollaceae). Pl. Syst. Evol. 184: 175–193.

    Google Scholar 

  • Schrank, E. 1964. Nonmarine Cretaceous palynology of northern Kordofan, Sudan, with notes on fossil Salviniales (water ferns). Geol. Rundschau 83: 773–786.

    Google Scholar 

  • Serbet, R. &G. W. Rothwell. 1999.Osmunda cinnamomea (Osmundaceae) in the upper Cretaceous of western North America: additional evidence for exceptional species longevity in filicalean ferns. Int. J. Pl. Sci. 160: 425–433.

    Google Scholar 

  • Shaparenko, K. K. 1956. Istoria Salvinii. Trudy Bot. Inst. Komarova Akad. Nauk S.S.S.R. ser. 8, Paleobot., Fasc. II: 7–44 +3 pls. [In Russian]

    Google Scholar 

  • Skog, J. E.. 1982.Pelletixia amelguita—a new species of fossil fern in the Potomac group (lower Cretaceous). Amer. Fern J. 72: 115–124.

    Google Scholar 

  • —. 1992. The lower Cretaceous ferns in the genusAnemia (Schizaeaceae), Potomac Group of Virginia, and relationships within the genus. Rev. Palaeobot. Palynol. 70: 279–295.

    Google Scholar 

  • — 2001. The biogeography of Mesozoic leptosporangiate ferns related to extant ferns. Brittonia 53: 236–269.

    Google Scholar 

  • — &D. L. Dilcher. 1992. A new species ofMarsilea from the Dakota Formation in central Kansas. Amer. J. Bot. 79: 982–988.

    Google Scholar 

  • Smith, H. V. 1938. Some new and interesting plants from Sucker Creek, Idaho-Oregon boundary. Bull. Torrey Bot. Club 65: 557–564.

    Google Scholar 

  • Spicer, R. A., K. S. Davies &A. B. Herman. 1994. Circum-Arctic plant fossils and the Cretaceous-Tertiary transition. Pages 127–149.In: M. C. Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.

    Google Scholar 

  • Squinabol, S. 1889. Contribuzioni alla flora fossile dei terreni terziarii della Liguria. T. II. Genova. 1–43.

  • Stevenson, D. W. &H. Loconte. 1996. Ordinal and familial relationships of pteridophyte genera. Pages 435–467.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteridology in perspective. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Stockey, R. A. &S. Y. Smith. 2000. A new species ofMillerocaulis (Osmundaceae) from the lower Cretaceous of California. Int. J. Pl. Sci. 161: 159–166.

    Google Scholar 

  • —,H. Nishida &G. Rothwell. 1999. Permineralized ferns from the middle Eocene Princeton Chert. I.:Makotopteris princetonensis gen. et sp. nov. (Athyriaceae). Int. J. Pl. Sci. 160: 1047–1055.

    Google Scholar 

  • Stockmans, F. 1936. Vegetaux Eocenes des environs de Bruxelles. Mém Mus. Roy. Hist. Nat. Belgique 76: 1–56.

    Google Scholar 

  • Stover, L. E. &A. D. Partridge. 1973. Tertiary and late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proc. Roy. Soc. Victoria 85: 237–286.

    Google Scholar 

  • Teslenko, J. V. 1990. Floristic and paleoclimatic changes in Palaeogene and Neogene times over the territory of the Ukraine. Pages 115–118.In: E. Knobloch & Z. Kvacek editors. Proceedings of the Symposium Palaeofloristic and Palaeoclimatic Changes in the Cretaceous and Tertiary. Geological Survey Publisher, Prague.

    Google Scholar 

  • Tidwell, W. D. 1994.Ashicaulis, a new genus for some species of Millerocaulis (Osmundaceae). Sida 16: 253–261.

    Google Scholar 

  • — &S. R. Ash. 1994. A review of selected Triassic to early Cretaceous ferns. J. Pl. Res. 107: 417–442.

    Google Scholar 

  • — &D. A. Medlyn. 1991. Two new species ofAurealcaulis (Osmundaceae) from northwestern New Mexico. Great Basin Naturalist 51: 325–335.

    Google Scholar 

  • — &H. Nishida. 1993. A new fossilized tree fern stem,Nishidacaulis burgii gen, et sp. nov., from Nebraska-South Dakota, USA. Rev. Palaeobot. Palynol. 78: 55–67.

    Google Scholar 

  • — &L. R. Parker. 1987.Aurealcaulis crossi gen. et sp. nov., an arborescent, osmundaceous trunk for the Fort Union Formation (Paleocene), Wyoming. Amer. J. Bot. 74: 803–812.

    Google Scholar 

  • — &J. E. Skog. 1992. Two new fossil matoniaceous stem genera from Tasmania, Australia. Rev. Palaeobot. Palynol. 70: 362–277.

    Google Scholar 

  • Tiffney, B. H. 1994. An estimate of the early Tertiary paleoclimate of the southern Arctic. Pages 267–295.In: M. C Boulter & H. C. Fisher editors. Cenozoic plants and climates of the Arctic. Springer-Verlag, Berlin.

    Google Scholar 

  • Torres, T. G. &H. Meon. 1993.Lophosoria from the Tertiary of King George Island and Central Chile: origin and dispersion in the Southern Hemisphere. Bol. Inst. Antárt. Chileno, Ser. Ci. 43: 18–30.

    Google Scholar 

  • Truswell, E. M., I. R. Sluiter &W. K. Harris. 1985. Palynology of the Oligocene-Miocene sequence in the Oakvale 1 corehole, western Murray Basin, south Australia. BMR J. Austral. Geol. Geophys. 9: 267–295.

    Google Scholar 

  • Tryon, A. F. &B. Lugardon. 1991. Spores of the Pteridophyta. Springer-Verlag, Berlin.

    Google Scholar 

  • Van Bergen, P. F., M. E. Collinson &J. W. De Leeuw. 1993. Chemical composition and ultrastructure of fossil and extant microspore massulae and megaspores. Grana 1993 Suppl. 1: 18–30.

    Google Scholar 

  • ——,D. E. G. Briggs, J. W. De Leeuw, A. C. Scott, R. P. Evershed &P. Finch. 1995. Resistant biomacromolecules in the fossil record. Acta Bot. Neerl. 44: 319–342.

    Google Scholar 

  • Vanhoorne, R. 1992.Azolla andSalvinia species (Azollaceae and Salviniaceae, Pteridophyta), from the Caenozoic of Belgium. Bull. de Inst. Roy. Sci. Nat. Belgique, Sci. Terre 62: 229–255.

    Google Scholar 

  • Van Konijnenburg-van Cittert, J. H. A. 1989. Dicksoniaceous sporesin situ from the Jurassic of Yorkshire, England. Rev. Palaeobot. Palynol. 61: 273–301.

    Google Scholar 

  • — 1991. Diversification of spores in fossil and extant Schizaeaceae. Pages 103–118.In: S. Blackmore & S. H. Barnes editors. Pollen and spores. Systematics Association Special Volume No. 44. Clarendon Press, Oxford.

    Google Scholar 

  • —. 1993. A review of the Matoniaceae based onin situ spores. Rev. Palaeobot. Palynol. 78: 235–267.

    Google Scholar 

  • — &M. H. Kurmann. 1994. Comparative ultrastructure of living and fossil matoniaceous spores (Pteridophyta). Pages 67–86.In: M. H. Kurmann & J. A. Doyle editors. Ultrastructure of fossil spores and pollen. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Voronova, M. A. 1993. Evolution of some Cretaceous ferns in European Paleofloristic province. Pages 11–16.In: E. Planderová, M. Konzálová, Z. Kvacek, et al. editors. Paleofloristic and palaeoclimatic changes during Cretaceous and Tertiary. Konferencie. Sympoziá. Semináre, Geologicky Ústavu Dionyza Stúra, Bratislava.

  • Walther, H.. 1999. Die Tertiär flora von Kleinsaubernitz bei Bautzen. Palaeontographica Abt. B, Paläophytol. 249: 63–174.

    Google Scholar 

  • Watson, J. 1969. Revision of the English Wealden flora, 1. Charales-Ginkgoales. Bull. Brit. Mus. (Nat. Hist.) Geol. 7: 207–254 +pls. 1–6.

    Google Scholar 

  • Weber, R. 1973.Salvinia coahuilensis nov. sp. del Cretacio Superior de Mexico. Ameghiniana 10: 173–190.

    Google Scholar 

  • WGCPC (The writing group of Cenozoic plants of China). 1978. The Cenozoic plants from China. Fossil Plants of China. Vol. 3. Science Press, Beijing. [In Chinese].

    Google Scholar 

  • Wilde, V. 1989. Untersuchungen zur Systematik der Blattreste aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Courier Forschungsinst. Senckenberg 115: 1–213.

    Google Scholar 

  • — &H. Frankenhäuser. 1998. The middle Eocene plant taphocoenosis from Eckfeld (Eifel, Germany). Rev. Palaeobot. Palynol. 101: 7–28.

    Google Scholar 

  • Wilf, P., K. C. Beard, K. S. Davies-Vollum &J. W. Norejko. 1998. Portrait of a late Paleocene (early Clarkforkian) terrestrial ecosystem: big multi quarry and associated strata, Washakie Basin, southwestern Wyoming. Palaios 13: 514–532.

    Google Scholar 

  • Wing, S. L. 1987. Eocene and Oligocene floras and vegetation of the Rocky Mountains. Ann. Missouri Bot. Gard. 74: 748–784.

    Google Scholar 

  • — 1998. Late Paleocene-early Eocene floral and climatic change in the Bighorn Basin, Wyoming. Pages 380–400.In: M. P. Aubry, S. Lucas & W. A. Berggren editors. Late Paleocene-early Eocene climatic and biotic events in the marine and terrestrial realms. Columbia University Press, New York.

    Google Scholar 

  • Wolf, P. G. 1996. Pteridophyte phylogenies based on an analysis of DNA sequences: a multiple gene approach. Pages 203–215.In: J. M. Camus, M. Gibby & R. J. Johns editors. Pteriodology in perspective. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Wolfe, J. A. 1977. Paleogene floras from the Gulf of Alaska region. Prof. Pap. U.S. Geol. Surv. 997: 1–108 + 30 pls.

    Google Scholar 

  • — &G. R. Upchurch. 1986. Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. Nature 324: 148–151.

    Google Scholar 

  • ——. 1987. Leaf assemblages across the Cretaceous-Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proc. Natl. Acad. Sci. U.S.A. 84: 5096–5100.

    PubMed  Google Scholar 

  • Ziegler, A. M., C. R. Scotese &S. F. Barrett. 1983. Mesozoic and Cainozoic paleogeographic maps. Pages 240–252.In: P. Brosche & J. Sündermann editors. Tidal friction and the Earth's rotation II. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collinson, M.E. Cainozoic ferns and their distribution. Brittonia 53, 173–235 (2001). https://doi.org/10.1007/BF02812700

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02812700

Key words

Navigation