Skip to main content
Log in

Estimation of distribution tails —a semiparametric approach

SchÄitzen von Tails von Verteilungen — ein semiparametrischer Ansatz

  • Published:
Blätter der DGVFM

Zusammenfassung

Wir stellen eine neue SchÄtzmethode für den rechten Tail einer subexponentiellen Verteilung vor. Ausgehend von einem semiparametrischen Modell schÄtzen wir Parameter mittels der oberen Ord nungsstatistiken einer Stichprobe. Wir beweisen Konsistenz und asymptotische NormalitÄt der SchÄtzer. Ihre Eigenschaften für kleine Stichprohen untersuchen wir mittels Monte-Carlo-Simula tion. Schlie\lich wenden wir die SchÄtzmethode auf eine Stichprobe von Autohaftpflichtdaten aus einem Schadenexzedentenvertrag an.

Summary

We propose a new estimation procedure for the right tail of a subexponential distribution, which is based on the upper order statistics of a sample. We prove weak convergence and asymptotic normality of our estimators. Furthermore, we review their small sample properties which have been studied by Monte Carlo simulation. Finally, we apply the estimation procedure to a sample of automobile liability data from an excess of loss reinsurance treaty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barndorff-Nielsen, O. E. andCox, D. R. (1989): Asymptotic Techniques for Use in Statistics. Chapman and Hall, London.

    MATH  Google Scholar 

  • Beirlant, J. andTeugels, J. L. (1992): Modeling large claims in non-life insurance. Insurance: Math. and Econom.11, 17–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Bingham, N. H., Goldie, C. M. andTeugels, J. (1987): Regular Variation. Encyclopedia of Mathematics and Its Applications, Vol. 27. Cambridge University Press.

  • Broniatowski, M. (1990): On the estimation of the Weibull tail coefficient. Preprint.

  • Csörgö, S. andMason, D. M. (1985): Central limit theorems for sums of extreme values. Math. Proc. Camb. Phil. Soc.98, 547–558.

    Article  MATH  Google Scholar 

  • Davison, A. S. andSmith, R. L. (1990): Models for exceedances over high thresholds (with discus sion). J. R. Statist. Soc.B 52, 393–442.

    MathSciNet  Google Scholar 

  • Devroye, L. (1984): Random variable generation for unimodal and monotone densities. Computing32, 43–68.

    Article  MATH  MathSciNet  Google Scholar 

  • Davis, R. andResnick, S. (1984): Teil estimates motivated by extreme value theory. Ann. Stat.12, 1467–1487.

    Article  MATH  MathSciNet  Google Scholar 

  • Dekkers, A. L. M. andde Haan, L. (1989): On the estimation of the extreme-value index and large quantile estimation. Ann. Statist.17, 1795–1832.

    Article  MATH  MathSciNet  Google Scholar 

  • Dekkers, A. L. M., Einmahl, J. H. J. andde Haan, L. (1989): A moment estimator for the index of an extreme-value distribution. Ann. Statist.17, 1833–1855.

    Article  MATH  MathSciNet  Google Scholar 

  • Dwass, M. (1966): Extremal processes II. Illinois J. Math.10, 381–391.

    MATH  MathSciNet  Google Scholar 

  • Embrechts, P. andGoldie, C. M. (1982): On convolution tails. Stoch. Proc. Appl.13, 263–278.

    Article  MATH  MathSciNet  Google Scholar 

  • Embrechts, P. andVeraverbeke, N. (1982): Estimates of the probability of ruin with special emphasis on the possibility of large claims. Insurance: Math, and Econom.1, 55–72.

    Article  MATH  MathSciNet  Google Scholar 

  • Embrechts, P. and Villaseñor, J. A. (1988): Ruin estimates for large claims. Insurance: Math. and Econom.7, 269–274.

    Article  MATH  MathSciNet  Google Scholar 

  • Galambos, J. (1987): The Asymptotic Theory of Extreme Order Statistics, 2nd edn. Malabar, Florida: Krieger.

    MATH  Google Scholar 

  • Goldie, C. M. andSmith, R. (1987): Slow variation with remainder: Theory and applications. Quart. J. Math. Oxford (2)38, 45–71.

    Article  MATH  MathSciNet  Google Scholar 

  • Haan, L. de (1970): On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tract 32, Mathematics Centre, Amsterdam, Holland.

    MATH  Google Scholar 

  • Haeusler, E. andTeugels, J. L. (1985): On asymptotic normality of Hill’s estimator for the exponent of regular variation. Ann. Stat.13, 743–756.

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, P. (1982): On some simple estimates of an exponent of regular variation. J. R. Statist. Soc.B 44, 37–42.

    Google Scholar 

  • Hill, B. M. (1975): A simple general approach to inference about the tail of a distribution. Ann. Stat.3, 1163–1174.

    Article  MATH  Google Scholar 

  • Hogg, R. V. andKlugman, S. A. (1984): Loss Distributions. New York: Wiley.

    Google Scholar 

  • Joe, H. (1987): Estimation of quantiles of the maximum of N observations. Biometrika72, 347–354.

    MathSciNet  Google Scholar 

  • Keller, B. andKlüppelberg, C. (1991): Statistical estimation of large claim distributions. Mitteilun gen der SVVM2, 1991.

    Google Scholar 

  • Klüppelberg, C. (1989): Estimation of ruin probabilities by means of hazard rates. Insurance: Math. and Econom.8, 279–285.

    Article  MATH  MathSciNet  Google Scholar 

  • Lo, G. S. (1989): A note on the asymptotic normality of sums of extreme values. J. Statist. Plann. Inference22, 127–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Mason, D. M. (1982): Laws of large numbers for sums of extreme values. Ann. Stat.10, 754–764.

    MATH  Google Scholar 

  • Morgan, B. J. T. (1984): Elements of Simulation. Chapman and Hall, London.

    MATH  Google Scholar 

  • Pickands, J. (1968): Moment convergence of sample extremes. Ann. Math. Statist.39, 881–889.

    Article  MATH  MathSciNet  Google Scholar 

  • Pyke, R. (1965): Spacings. J. Statist. Soc.B 27, 395–436.

    MathSciNet  Google Scholar 

  • Reiss, R. D. (1989): Approximate Distributions of Order Statistics. Springer Series in Statistics. New York: Springer.

    Google Scholar 

  • Resnick, S. I. (1987): Extreme Values, Regular Variation, and Point Processes. Applied Probability, Vol. 4. New York: Springer.

    Google Scholar 

  • Rossberg, H. J. (1960): über die Verteilungsfunktionen der Differenzen und Quotienten von Ranggrö\en. Math. Nachr.21, 37–79.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, R. L. (1987): Estimating tails of probability distributions. Ann. Stat.15, 1174–1207.

    Article  MATH  Google Scholar 

  • Teugels, J. L. (1984): Extreme values in insurance mathematics. In: Statistical Extremes and Applications (J. Tiago de Oliveira, ed.), 253–259. Dordrecht, Reidel.

    Google Scholar 

  • Tiago de Oliveira, J. (1984): Univariate extremes: statistical choice. In: Statistical Extremes and Applications (J. Tiago de Olivera, ed.), 91–107. Dordrecht: Reidel.

    Google Scholar 

  • Villaseñor, J. A. (1981): Norming constants for maxima attracted to exp(-e-x). 43rd Session, ISI. Buenos Aires, Argentina.

    Google Scholar 

  • Weissman, I. (1978): Estimation of parameters and large quantiles based on the k largest observa tions. J. Amer. Statist. Assoc.73, 812–815.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klüppelberg, C., Villaseñor, J.A. Estimation of distribution tails —a semiparametric approach. Blätter DGVFM 21, 213–235 (1993). https://doi.org/10.1007/BF02809405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02809405

Keywords

Navigation