Skip to main content
Log in

Principal eigenvalues, topological pressure, and stochastic stability of equilibrium states

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Suppose thatL is a second order elliptic differential operator on a manifoldM, B is a vector field, andV is a continuous function. The paper studies by probabilistic and dynamical systems means the behavior asɛ → 0 of the principal eigenvalueλ ε(V) for the operatorL ε = ɛL + (B, ∇) +V considered on a compact manifold or in a bounded domain with zero boundary conditions. Under certain hyperbolicity conditions on invariant sets of the dynamical system generated by the vector fieldB the limit asɛ → 0 of this principal eigenvalue turns out to be the topological pressure for some function. This gives a natural transition asɛ → 0 from Donsker-Varadhan’s variational formula for principal eigenvalues to the variational principle for the topological pressure and unifies previously separate results on random perturbations of dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Aronson,The fundamental solution of a linear parabolic equation containing a small parameter, Illionis J. Math.3 (1959), 580–619.

    MATH  MathSciNet  Google Scholar 

  2. R. Bowen,Entropy-expansive maps, Trans. Am. Math. Soc.164 (1972), 323–331.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Brin and Yu. Kifer,Dynamics of Markov chains and stable manifolds for random diffeomorphisms, Ergodic Theory & Dynamic Systems7 (1987), 351–374.

    MATH  MathSciNet  Google Scholar 

  4. R. Bowen and D. Ruelle,The ergodic theory of Axiom A flows, Invent. Math.29 (1975), 181–202.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Denker, C. Grillenberger and K. Sigmund,Ergodic Theory on Compact Spaces, Lecture Notes in Math.527, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  6. N. Dunford and J. T. Schwartz,Linear Operators, Part I, Interscience, New York, 1958.

    Google Scholar 

  7. M. D. Donsker and S. R. S. Varadhan,On a variational formula for the principal eigenvalue for operators with maximum principle, Proc. Natl. Acad. Sci. U.S.A.72 (1975), 780–783.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. D. Donsker and S. R. S. Varadhan,Asymptotic evaluation of certain Markov processes expectations for large time, I, Commun. Pure Appl. Math.28 (1975), 1–47.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. D. Donsker and S. R. S. Varadhan,On the principal eigenvalue of second-order elliptic differential operators, Commun. Pure Appl. Math.29 (1976), 595–621.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Eizenberg and Y. Kifer,The asymptotic behavior of the principal eigenvalue in a singular perturbation problem with invariant boundaries, Probab. Theory Relat. Fields76 (1987), 439–476.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Friedman,Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964.

    MATH  Google Scholar 

  12. A. Friedman,Stochastic Differential Equations and Applications, New York, Academic Press, 1975.

    MATH  Google Scholar 

  13. G. Gong, M. Qian and Z. Zhao,Killed diffusions and their conditioning, Probab. Theory Relat. Fields80 (1988), 151–167.

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. Kifer,On the principal eigenvalue in a singular perturbation problem with hyperbolic limit points and circles, J. Differ. Equ.37 (1980), 108–139.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Kifer,Stochastic stability of the topological pressure, J. Analyse Math.38 (1980), 255–286.

    MATH  MathSciNet  Google Scholar 

  16. Y. Kifer,The inverse problem for small random perturbations of dynamical systems, Isr. J. Math.40 (1981), 165–174.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Kifer,Random Perturbations of Dynamical Systems, Birkhäuser, Boston, 1988.

    MATH  Google Scholar 

  18. M. A. Krasnoselskii,Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

    Google Scholar 

  19. S. Orey and S. Pelikan,Deviations of trajectory averages and the defect in Pesin’s formula for Anosov diffeomorphisms, Trans. Am. Math. Soc.315 (1989), 741–753.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. G. Pinsky,On the convergence of diffusion processes conditioned to remain in a bounded region for large time to limiting positive recurrent diffusion processes, Ann. Probab.13 (1985), 363–378.

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Vaienti,Computing the pressure for Axiom — A attractors by time series and large deviations for the Lyapunov exponent, J. Stat. Phys.56 (1989), 403–413.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. D. Ventsel and M. I. Freidlin,On small random perturbations of dynamical systems, Russian Math. Surveys25 (1970), 1–56.

    Article  Google Scholar 

  23. P. Walters,An Introduction to Ergodic Theory, Springer, New York, 1982.

    MATH  Google Scholar 

  24. H. S. Wisniewski,Rate of approach to minima and sinks the Morse-Smale case, Trans. Am. Math. Soc.284 (1984), 567–581.

    Article  MATH  MathSciNet  Google Scholar 

  25. L.-S. Young,Large deviations in dynamical systems, preprint.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by US-Israel Binational Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kifer, Y. Principal eigenvalues, topological pressure, and stochastic stability of equilibrium states. Israel J. Math. 70, 1–47 (1990). https://doi.org/10.1007/BF02807217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02807217

Keywords

Navigation