Skip to main content
Log in

An analysis of water column distributions in Florida Bay

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Florida Bay is a shallow, semi-enclosed lagoon that has recently experienced significant changes to its ecosystem. These include increased turbidity and the occurrence of cyanobacteria blooms in the central region of the bay. To accurately understand these changes we need to understand the spatial and temporal patterns in observed water quality parameters. To this end, we have used empirical orthogonal functions (EOFs) to analyze both the spatial and temporal variability in an 8-yr record of water quality variables. We have used the EOFs in two ways, one highlighting local changes occurring in the bay, the other emphasizing changes occurring on a bay-wide scale. The local analysis shows that the central region of the bay has the greatest variability in water quality parameters, especially with respect to chlorophyll and nutrient concentrations. The bay-wide analysis shows a different picture. The chlorophyll blooms in the central bay are not apparent bay-wide indicating that they are a local manifestation of processes occurring on a bay-wide scale. The spatial and temporal patterns for nitrate are dissimilar from the other nutrients raising the possibility that the mechanisms controlling nitrate differ from those controlling other nutrients. On a bay-wide scale, spatial patterns are similar to distributions of sediment type and show the significance of interactions between the water column and benthos. Time-series analysis of the EOFs shows that the dominant variation of many water quality parameters is seasonal, even though a system-wide shift occurred between 1994–1995 corresponding to an increase in rainfall and runoff from the Everglades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Brenner, R. J., M. J. Dagg, andP. B. Ortner. 2001. Growth, distribution and carbon demand in the plankton of Florida Bay, p. 103–104.In Programs and Abstracts, 2001 Florida Bay Science Conference. Florida Sea Grant, University of Florida, Gainsville, Florida.

    Google Scholar 

  • Boyer, J. N., J. W. Fourqurean, andR. D. Jones. 1997. Spatial characterization of water quality in Florida Bay and White-water Bay by multivariate analysis: Zones of similar influence.Estuaries 20:743–758.

    Article  CAS  Google Scholar 

  • Boyer, J. N., J. W. Fourqurean, andR. D. Jones. 1999. Seasonal and long-term trends in the water quality of Florida Bay (1989–1997).Estuaries 22:417–430.

    Article  CAS  Google Scholar 

  • Bugden, J. B. C., M. A. Guerrero, andR. D. Jones. 1998. Spatial and temporal variation of marine bacterioplankton in Florida Bay, U.S.A..Journal of Coastal Research 14:1304–1313.

    Google Scholar 

  • Carlson, P. R., L. A. Yarbro, andT. R. Barber. 1994. Relationship of sediment sulfide to mortality ofThalassia testudinum in Florida Bay.Bulletin of Marine Science 54:733–746.

    Google Scholar 

  • Cattell, R. B. 1966. The scree test for the number of factors.Journal of Multivariate Behavioural Research 1:245–276.

    Article  Google Scholar 

  • Cloern, J. E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California.Reviews of Geophysics 34:127–168.

    Article  CAS  Google Scholar 

  • Cotner, J. B., R. H. Sada, H. Bootsma, T. Johengen, J. F. Cavaletto, andW. S. Gardner. 2000. Nutrient limitation of heterotrophic bacteria in Florida Bay.Estuaries 23:611–620.

    Article  CAS  Google Scholar 

  • Courant, R. andD. Hilbert. 1989. Methods of Mathematical Physics, Volume 1. Wiley Classics Edition. Wiley-Interscience, New York.

    Google Scholar 

  • Durako, M. D. andK. M. Kuss. 1994. Effects ofLabyrinthula infection on the photosynthetic capacity ofThalassia lestudinum.Bulletin of Marine Science 54:727–732.

    Google Scholar 

  • Emery, W. J. andR. E. Thomson. 1998. Data Analysis Methods in Physical Oceanography. Pergamon, New York.

    Google Scholar 

  • Farmer, S. A. 1971. An investigation into the results of principal component analysis of data derived from random numbers.Statistician 20:63–72.

    Article  Google Scholar 

  • Fourqurean, J. W., R. D. Jones, andJ. C. Zieman. 1993. Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, U.S.A.: Inferences from spatial distributions.Estuarine, Coastal and Shelf Science 36:295–314.

    Article  CAS  Google Scholar 

  • Fourqurean, J. W. andM. B. Robblee. 1999. Florida Bay: A history of recent ecological changes.Estuaries 22:345–357.

    Article  CAS  Google Scholar 

  • Fourqurean, J. W. andJ. C. Zieman. 1991. Photosynthesis, respiration and whole plant carbon budget of the seagrass.Thalassia testudinum.Marine Ecology Progress Series 69:161–170.

    Article  Google Scholar 

  • Hall, M. O., M. D. Durako, J. W. Fourqurean, andJ. C. Zieman. 1999. Decadal changes in seagrass distributions and abundance in Florida Bay.Estuaries 22:445–459.

    Article  Google Scholar 

  • Horel, J. D. 1981. A rotated principal component analysis of the interannual variability of the northern hemisphere 500 mb height field.Monthly Weather Review 109:2080–2092.

    Article  Google Scholar 

  • Joye, S. B. andJ. T. Hollibaugh. 1995. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments.Science 270:623–625.

    Article  CAS  Google Scholar 

  • Kaldy, J. E. andK. H. Dunton. 2000. Above—and below-ground production, biomass and reproductive ecology ofThalassia testudinum (turtle grass) in a subtropical coastal lagoon.Marine Ecology Progress Series 193:271–283.

    Article  CAS  Google Scholar 

  • Lapointe, B. E. andM. W. Clark. 1992. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys.Estuaries 15:465–476.

    Article  CAS  Google Scholar 

  • Lee, K.-S. 1998. Nitrogen budget of the seagrassThalassia testudinum in the western Gulf of Mexico. Ph.D. Dissertation, University of Texas, Austin, Texas.

    Google Scholar 

  • Noble, B. andJ. W. Daniel. 1977. Applied Linear Algebra. 2nd edition. Prentice Hall, New Jersey.

    Google Scholar 

  • North, G. R., T. L. Bell, R. F. Cahalan, andF. J. Moeng. 1982. Sampling errors in the estimation of empirical orthogonal functions.Monthly Weather Review 110:699–706.

    Article  Google Scholar 

  • Phlips, E. J. andS. Badylak. 1996. Spatial variability in phytoplankton standing crop and composition in a shallow innershelf lagoon, Florida Bay, Florida.Bulletin of Marine Science 58: 203–216.

    Google Scholar 

  • Phlips, E. J., S. Badylak, andT. C. Lynch. 1999. Blooms of the picoplanktonic cyanobacteriumSynechococcus in Florida Bay, a subtropical inner-shelf lagoon.Limnology and Oceanography 44:1166–1175.

    Article  Google Scholar 

  • Phlips, E. J., T. C. Lynch, andS. Badylak. 1995. Chlorophylla, tripton. color, and light availability in a shallow tropical innershelf lagoon. Florida Bay, U.S.A..Marine Ecology Progress Series 127:223–234.

    Article  Google Scholar 

  • Prager, E. J. andR. B. Halley. 1997. Florida Bay bottom types. U.S. Geological Survey open file report 97-526, U.S. Geological Survey, St. Petersburg, Florida.

    Google Scholar 

  • Preisendorfer, R. W., 1988. Principal Component Analysis in Meteorology and Oceanography, Developments in Atmospheric Science Series, Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Richman, M. B. 1981. Obliquely rotated principal components: An improved meteorological map typing technique?.Journal of Applied Meteorology 20:1145–1159.

    Article  Google Scholar 

  • Robblee, M. B., T. R. Barber, P. R. Carlson, M. J. Durako, J. W. Fourqurean, L. K. Muehkstein, D. Porter, L. A. Yarbro, R. T. Zieman, andJ. C. Zieman. 1991. Mass mortality of the tropical seagrassthalassia testudinum in Florida Bay (U.S.A.).Marine Ecology Progress Series 71:297–299.

    Article  Google Scholar 

  • Rudnick, D. T., Z. Chen, D. L. Childers, J. N. Boyer, andT. D. Fontaine, III. 1999. Phosphorus and nitrogen inputs to Florida Bay: The importance of the Everglades watershed.Estuaries 22:398–416.

    Article  CAS  Google Scholar 

  • Smith, N. P. 1994. Long-term Gulf-to-Atlantic transport through tidal channels in the Florida Keys.Bulletin of Marine Science 54: 602–609.

    Google Scholar 

  • The Mathworks. 1996. Using Matlab Graphics, Version 5. The Mathworks Inc., Natick, Massachusetts.

    Google Scholar 

  • Thayer, G. W. andA. J. Chester. 1989. Distribution and abundance of fisheries among basin and channel habitats in Florida Bay.Bulletin of Marine Science 44:200–219.

    Google Scholar 

  • Wang, J. D., J. van de Kreeke, N. Krishnan, andD. Smith. 1994. Wind and tide response in Florida Bay.Bulletin of Marine Science 54:579–601.

    Google Scholar 

  • Zieman, J. C., J. W. Fourqurean, andR. L. Iverson. 1989. Distribution, abundance and production of seagrass and macroalgae in Florida Bay.Bulletin of Marine Science 44:292–311.

    Google Scholar 

  • Zieman, J. C., J. W. Fourqurean, M. B. Robblee, M. J. Durako, P. Carlson, L. Yarbro, andG. Powell. 1988. A catastrophic die-off of seagrass in Florida Bay and Everglades National Park: Extent, effect and potential causes.Eos 69:1111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burd, A.B., Jackson, G.A. An analysis of water column distributions in Florida Bay. Estuaries 25, 570–585 (2002). https://doi.org/10.1007/BF02804891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804891

Keywords

Navigation