Skip to main content
Log in

The soft-bottom macrobenthos of North Carolina estuaries

  • Published:
Estuaries Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2004

Abstract

The structure of macro infaunal (>0.5 mm sieve size) assemblages was examined in samples of unconsolidated substrates collected during the summers of 1994–1997 at 208 stations throughout North Carolina estuaries. Numerical classification (cluster analysis) of stations resulted in 14 distinct site groups that reflected discernible habitatrelated patterns in species distributions. Multiple discriminant analysis, performed on synoptic abiotic variables (depth, salinity, dissolved oxygen, pH, percent silt-clay), showed that the separation of site groups was related primarily to salinity. Percent silt-clay had a secondary influence on the separation of sites within similar salinity zones. Species diversity among site groups generally decreased with decreasing salinity and increasing mud content of sediment. Nodal analysis showed a wide range in constancy and fidelity of species assemblages within site groups. Some assemblages dominated by euryhaline species had no particular affinity with any one site group. The strongest affinities, as evidenced by high values of both constancy and fidelity, were displayed by an assemblage of oligochaetes, insect larvae, gammaridean amphipods, and the clamCorbicula fluminea in tidal freshwater muds; and an assemblage of haustoriid amphipods, the bivalveDonax variabilis, the polychaeteParaonis fulgens, and unidentified echinoids at high-salinity sites in outer Pamlico Sound near ocean inlets. A series of stations with impaired benthic assemblages in polluted habitats emerged from the cluster analysis and was distinguishable from other site groups that reflected a greater influence of natural controlling factors (such as salinity and sediment type) on species distributions. These results suggest that the interaction of both anthropogenic and natural environmental controlling factors is important in defining the structure of these infaunal assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Alden, R. W., D. M. Dauer, J. A. Ranasinghe, L. C. Scott, andR. J. Llanso. 2002. Statistical verification of the Chesapeake Bay benthic index of biotic integrity.Environmetrics 13:473–498.

    Article  Google Scholar 

  • Boesch, D. F. 1977. Application of numerical classification in ecological investigations of water pollution. U.S. Environmental Protection Agency, ROAP/TASK No. 21, BEI. Corvallis Environmental Research Laboratory, Newport, Oregon.

    Google Scholar 

  • Bray, J. R. andJ. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin.Ecological Monographs 27:320–349.

    Article  Google Scholar 

  • Brett, C. E. 1963. Relationships between marine invertebrate infauna distribution and sediment type distribution in Bogue Sound, North Carolina. Ph.D. Dissertation, University of North Carolina, Chapel Hill, North Carolina.

    Google Scholar 

  • Cammen, L. M. 1979. The macro-infauna of a North Carolina salt marsh.The American Midland Naturalist 102:244–253.

    Article  Google Scholar 

  • Cerame-Vivas, M. J. andI. E. Gray 1966. The distributional pattern of benthic invertebrates off the continental shelf of North Carolina.Ecology 47:261–270.

    Article  Google Scholar 

  • Chester, A. J., R. L. Ferguson, andG. W. Thayer. 1983. Environmental gradients and benthic macroinvertebrate distributions in a shallow North Carolina estuary.Bulletin of Marine Science 33:282–295.

    Google Scholar 

  • Clark, K. R. andR. M. Warwick. 1994. Change in marine communities: An approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth, U.K.

    Google Scholar 

  • Day, J. H., J. G. Field, andM. P. Montgomery. 1971. The use of numerical methods to determine the distribution of benthic fauna across the continental shelf of North Carolina.Journal of Animal Ecology 40:93–125.

    Article  Google Scholar 

  • Diaz, R. J. andR. Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna.Oceanography and Marine Biology: An Annual Review 33:245–303.

    Google Scholar 

  • Engle, V. D., J. K. Summers, andG. R. Gaston. 1994. A benthic index of environmental condition of Gulf of Mexico estuaries.Estuaries 17:372–384.

    Article  Google Scholar 

  • Green, R. H. andG. L. Vascotto. 1978. A method for the analysis of environmental factors controlling patterns of species composition in aquatic communities.Water Research 12:583–590.

    Article  Google Scholar 

  • Hayek, L. C. andM. A. Buzas. 1997. Surveying Natural Populations. Columbia University Press, New York.

    Google Scholar 

  • Holland, A. F. (ed.). 1990. Near coastal program plan for 1990: Estuaries. Environmental Protection Agency 600/4-90/033. Office of Research and Development, Narragansett, Rhode Island.

    Google Scholar 

  • Hyland, J. L., L. Balthis, C. T. Hackney, G. McRae, A. H. Ringwood, T. R. Snoots, R. F. Van Dolah, andT. L. Wade. 1998a. Environmental quality of estuaries of the Carolinian Province: 1995. National Oceanic and Atmospheric Administration Technical Memorandum NOS ORCA 123. National Ocean Service, Silver Spring, Maryland.

    Google Scholar 

  • Hyland, J. L., L. Balthis, C. T. Hackney, andM. Posey. 2000. Sediment quality of North Carolina estuaries: An integrative assessment of sediment contamination, toxicity, and condition of benthic fauna.Journal of Aquatic Ecosystem Stress and Recovery 8:107–124.

    Article  CAS  Google Scholar 

  • Hyland, J., E. Baptiste, J. Campbell, J. Kennedy, R. Kropp, andS. Williams. 1991. Macroinfaunal communities of the Santa Maria Basin on the California outer continental shelf and slope.Marine Ecology Progress Series 78:147–161.

    Article  Google Scholar 

  • Hyland, J. L., E. J. Hoffman, andD. K. Phelps. 1985. Differential responses of two nearshore infaunal assemblages to experimental petroleum additions.Journal of Marine Research 43: 365–394.

    CAS  Google Scholar 

  • Hyland, J. L., T. R. Snoots, andW. L. Balthis. 1998b. Sediment quality of estuaries in the southeastern U.S.Environmental Monitoring and Assessment 51:331–343.

    Article  CAS  Google Scholar 

  • Hyland, J. L., R. F. Van Dolah, andT. R. Snoots. 1999. Predicting stress in benthic communities of southeastern U.S. estuaries in relation to chemical contamination of sediments.Environmental Toxicology and Chemistry 18:2557–2564.

    Article  CAS  Google Scholar 

  • Krebs, C. J. 1998. Ecological Methodology, 2nd edition. Pearson Benjamin Cummings, Menlo Park, California.

    Google Scholar 

  • Lenihan, H. S. andC. H. Peterson. 1998. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs.Ecological Applications 8:128–140.

    Article  Google Scholar 

  • Llanso, R. J., L. C. Scott, D. M. Dauer, J. L. Hyland, andD. E. Russell. 2002a. An estuarine benthic index of biotic integrity for the Mid-Atlantic region of the United States. I. Classification of assemblages and habitat definition.Estuaries 25: 1219–1230.

    Article  Google Scholar 

  • Llanso, R. J., L. C. Scott, J. L. Hyland, D. M. Dauer, D. E. Russell, andF. W. Kutz. 2002b. An estuarine benthic index of biotic integrity for the Mid-Atlantic region of the United States. II. Index development.Estuaries 25:1231–1242.

    Article  Google Scholar 

  • Long, E. R., L. J. Field, andD. D. MacDonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines.Environmental Toxicology and Chemistry 17:714–727.

    Article  CAS  Google Scholar 

  • Long, E. R., D. D. MacDonald, S. L. Smith, andF. D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments.Environmental Management 19:81–97.

    Article  Google Scholar 

  • Mallin, M. A., J. M. Burkholder, L. B. Cahoon, andM. H. Posey. 2000. North and South Carolina coasts.Marine Pollution Bulletin 41:56–75.

    Article  CAS  Google Scholar 

  • Pearson, T. H. andR. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment.Oceanography and Marine Biology Annual Review 16:229–31.

    Google Scholar 

  • Posey, M. H. andW. G. Ambrose, Jr. 1994. Effects of proximity to an offshore hard-bottom reef on infaunal abundances.Marine Biology 118:745–753.

    Article  Google Scholar 

  • SAS Institute, Inc. 2000. SAS Online Doc, Version 8. SAS, Cary, North Carolina.

    Google Scholar 

  • Shannon, C. E. 1948. A mathematical theory of communication.Bell System Technical Journal 27:379–423, 623–656.

    Google Scholar 

  • Sneath, P. H. A. andR. R. Sokal. 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.H. Freeman, San Francisco, California.

    Google Scholar 

  • Tenore, K. R. 1972. Macrobenthos of the Pamlico River estuary, North Carolina.Ecological Monographs 42:51–69.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (EPA). 2000. Ambient aquatic life water criteria for dissolved oxygen (saltwater): Cape Cod to Cape Hatteras. EPA 822-R-00-012. Environmental Protection Agency, Office of Water, Washington, D.C.

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA). 2002. Environmental Monitoring and Assessment Program, Research Strategy. 620/R-02/002. Environmental, Washington, D.C.

    Google Scholar 

  • Van Dolah, R. F., J. L. Hyland, A. F. Holland, J. S. Rosen, andT. R. Snoots. 1999. A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern USA.Marine Environmental Research 48:269–283.

    Article  Google Scholar 

  • Weisberg, S. B., J. A. Ranasinghe, D. M. Dauer, L. C. Schaffner, R. J. Diaz, andJ. B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay.Estuaries 20:149–158.

    Article  Google Scholar 

  • Weston, D. P. 1988. Macrobenthos-sediment relationships on the continental shelf off Cape Hatteras, North Carolina.Continental Shelf Research 8:267–286.

    Article  Google Scholar 

  • Williams, W. T. andJ. M. Lambert. 1961. Nodal analysis of associated populations.Nature 191:202.

    Article  Google Scholar 

Source of Unpublished Materials

  • Gallagher, E. Unpublished data. University of Massachusetts at Boston. 100 Morrissey Boulevard, Boston, Massachusetts. <http://www.es.umb.edu/edgwebp.htm>

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Hyland.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02803542.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyland, J.L., Balthis, W.L., Posey, M. et al. The soft-bottom macrobenthos of North Carolina estuaries. Estuaries 27, 501–514 (2004). https://doi.org/10.1007/BF02803541

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803541

Keywords

Navigation