Skip to main content
Log in

Physiological responses of a bloom-forming green macroalga to short-term change in salinity, nutrients, and light help explain its ecological success

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Enteromorpha intestinalis is a bloom-forming species of macroalgae associated with eutrophication. The objective of this study was to investigate how this alga performs osmoregulation and nutrient uptake in order to proliferate under environmental conditions that covary with eutrophication. We quantified the response ofE. intestinalis to salinity, light, and nutrients. We performed two short-term (48 h) laboratory experiments (salinity alone and salinity × nutrients × light) to examine the algal responses of tissue water, potassium (K+), and nutrient (NO 3 and total N) content. Tissue water content decreased with increasing salinity, and although K+ concentration decreased from the initial concentration, it decreased less with increased salinity treatment demonstrating two mechanisms to withstand short-term salinity fluctuation. The salinity × nutrient × light experiment showed that, in the short term, light had an interaction with tissue K+. Total tissue N content was positively related to N treatment level, and light did not affect total nutrient concentration. The effect of light was present whether the nutrients were present in the tissue as inorganic or organic forms. With reduced light, we hypothe size that the assimilation of inorganic to organic N was energy limited. The ability of this alga to take up available nutrients rapidly for growth and short-term osmoregulation, even under low light and salinity levels, helps to explain the bloom potential ofE. intestinalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ahern, J., J. Lyons, J. McLelland, andI. Valiela. 1995. Invertebrate response to nutrient-induced changes in macrophyte assemblages in Waquoit Bay.Biological Bulletin 189:241–242.

    Google Scholar 

  • Arnold, K. E. andS. N. Murray. 1980. Relationships between irradiance and photosynthesis for marine benthic green algae (Chlorophyta) of differing morphologies.Journal of Experimental Marine Biology and Ecology 43:183–192.

    Article  Google Scholar 

  • Birch, P. B., D. M. Gordon, andA. J. McComb. 1981. Nitrogen and phosphorus nutrition ofCladophora in the Peel-Harvey Estuarine System, western Australia.Botanica Marina 24:381–387.

    Google Scholar 

  • Black, D. R. andD. C. Weeks. 1972. Ionic relationships ofEnteromorpha intestinalis.New Phytologist 71:119–127.

    Article  CAS  Google Scholar 

  • Boyle, K. A., P. Fong, andK. Kamer. 2004. Spatial and temporal patterns in sediment and water column nutrients in an eutrophic southern California estuary.Estuaries 27:xxx-xxx.

    Article  Google Scholar 

  • Carlson, R. M. 1978. Automated separation and conductimetric determination of ammonia and dissolved carbon dioxide.Analytical Chemistry 50:1528–1531.

    Article  CAS  Google Scholar 

  • Christian, R. R., E. Fores, F. Comin, P. Viaroli, M. Naldi, andI. Ferrari. 1996. Nitrogen cycling networks of coastal ecosystems: Influence of trophic status and primary producer form.Ecological Modelling 87:111–129.

    Article  CAS  Google Scholar 

  • De Casabianca, M.-L., N. Barthelemy, O. Serrano, andA. Sfriso. 2002. Growth rate ofUlva rigida in different Mediterranean eutrophicated sites.Bioresource Technology 82:27–31.

    Article  Google Scholar 

  • Duarte, C. M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes.Ophelia 41:87–112.

    Google Scholar 

  • Edwards, D. M., R. H. Reed, J. A. Chudek, R. Foster, andW. D. P. Stewart. 1987. Organic solute accumulation in osmotically-stressedEnteromorpha intestinalis.Marine Biology 95:583–592.

    Article  CAS  Google Scholar 

  • Edwards, D. M., R. H. Reed, andW. D. P. Stewart. 1988. Osmoacclimation inEnteromorpha intestinalis: Long-term effects of osmotic stress on organic solute accumulation.Marine Biology 98:467–476.

    Article  Google Scholar 

  • Fong, P., K. E. Boyer, J. S. Desmond, andJ. B. Zedler. 1996. Salinity stress, nitrogen competition, and facilitation: What controls seasonal succession of two opportunistic green macroalgae?Journal of Experimental Marine Biology and Ecology 206: 203–221.

    Article  CAS  Google Scholar 

  • Fong, P., R. M. Donohoe, andJ. B. Zedler. 1994. Nutrient concentration in tissue of the macroalgaEnteromorpha as a function of nutrient history: An experimental evaluation using field microcosms.Marine Ecology Progress Series 106:273–281.

    Article  Google Scholar 

  • Franson, M. A. H. 1985. Determination: Method 303A; p. 157–160.In M. A. H. Franson (ed.), Standard Methods for the Examination of Water and Wastewater, 16th edition. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, D.C.

    Google Scholar 

  • Fujita, R. M. 1985. The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae.Journal of Experimental Marine Biology and Ecology 92: 283–301.

    Article  CAS  Google Scholar 

  • Fujita, R. M., P. A. Wheeler, andR. L. Edwards. 1988. Metabolic regulation of ammonium uptake byUlva rigida (Chlorophyta): A compartmental analysis of the rate-limiting step for uptake.Journal of Phycology 24:560–566.

    CAS  Google Scholar 

  • Hanisak, M. D. 1979. Nitrogen limitation ofCodium fragile spp.tomentosoides as determined by tissue analysis.Marine Biology 50:333–337.

    Article  CAS  Google Scholar 

  • Hansak, M. D. 1983. The nitrogen relationships of marine macroalgae, p. 699–730.In E. J. Carpenter and D. C. Capone (eds.), Nitrogen in the Marine Environment. Academic Press, New York.

    Google Scholar 

  • Harlin, M. M. andB. Thorne-Miller 1981. Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon.Marine Biology 65:221–229.

    Article  Google Scholar 

  • Hernandez, I., G. Peralta, J. L. Perez-Llorens, J. J. Vergara, andF. X. Niell. 1997. Biomass and dynamics of growthUlva species in Palmones River estuary.Journal of Phycology 33:764–772.

    Article  Google Scholar 

  • Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems.Annual Review of Ecology and Systematics 19:89–110.

    Article  Google Scholar 

  • Johnson, C. M. andA. Ulrich. 1959. Analytical methods for use in plant analysis, p. 26–78.In Bulletin 766. University of California. Berkeley, California.

    Google Scholar 

  • Kamer, K., K. A. Boyle, andP. Fong. 2001. Macroalgal bloom dynamics in a highly eutrophic southern California estuary.Estuaries 24:623–635.

    Article  Google Scholar 

  • Kamer, K. andP. Fong. 2000. A fluctuating salinity regime mitigates the negative effects of reduced salinity on the estuarine macroalga,Enteromorpha intestinalis (L.) link.Journal of Experimental Marine Biology and Ecology 254:53–69.

    Article  CAS  Google Scholar 

  • Kamer, K. andP. Fong. 2001. Nitrogen enrichment ameliorates the negative effects of reduced salinity in the green macroalgaEnteromorpha intestinalis.Marine Ecology Progress Series 218:87–93.

    Article  CAS  Google Scholar 

  • Karsten, U., C. Wiencke, andG. O. Kirst. 1991. The effect of salinity changes upon thephysiology of eulittoral green macroalgae from Anarctica and southern Chile: II. Intracellular inorganic ions and organic compounds.Journal of Experimental Botany 42:1533–1540.

    Article  CAS  Google Scholar 

  • Kinney, E. H. andC. T. Roman. 1998. Response of primary producers to nutrient enrichment in a shallow estuary.Marine Ecology Progress Series 163:89–98.

    Article  Google Scholar 

  • Krause-Jensen, D., P. B. Christiensen, andS. Rysgaard. 1999. Oxygen and nutrient dynamics within mats of the filamentous macroalgaChaetomorpha linum.Estuaries 22:31–38.

    Article  CAS  Google Scholar 

  • Kwak, T. J. andJ. B. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes.Oecologia 110:262–277.

    Article  Google Scholar 

  • Lapointe, B. E. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida.Limnology and Oceanography 42:1119–1131.

    Article  CAS  Google Scholar 

  • Lapointe, B. E. andK. R. Tenore. 1981. Experimental outdoor studies withUlva faciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition.Journal of Experimental Marine Biology and Ecology 53:135–152.

    Article  CAS  Google Scholar 

  • Marcomini, A., A. Sfriso, B. Pavoni, andA. A. Orio. 1995. Eutrophication of the Lagoon of Venice: Nutrient loads and exchanges, p. 59–80.In A. J. McComb, (ed.), Eutrophic Shallow Estuaries and Lagoons. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Martins, I., J. M. Oliveira, M. R. Flindt, andJ. C. Marques. 1999. The effect of salinity on the growth rate of the macroalgaeEnteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal).Acta Oecologia 20:259–265.

    Article  Google Scholar 

  • Martins, I., M. A. Pardal, A. I. Lillebo, M. R. Flindt, andJ. C. Marques. 2001. Hydrodynamics as a major factor controlling the occurrence of green macroalgal blooms in a eutrophic estuary: A case study on the influence of precipitation and river management.Estuarine, Coastal and Shelf Science 52: 165–177.

    Article  CAS  Google Scholar 

  • McGlathery, K., M. F. Pedersen, andJ. Borum. 1996. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake inChactomorpha linum (Chlorophyta).Journal of Phycology 32:393–401.

    Article  CAS  Google Scholar 

  • Peckol, P., B. Demeo-Anderson, J. Rivers, I. Valiela, M. Maldonado, andJ. Yates. 1994. Growth, nutrient uptake capacities and tissue constituents of the macroalgaeCladophora vagabunda andGracilaria tikvahiae related to site-specific nitrogen loading rates.Marine Biology 121:175–185.

    Article  Google Scholar 

  • Pedersen, M. F. 1995. Nitrogen limitation of photosynthesis and growth: Comparison across aquatic plant communities in a Danish estuary (Roskilde Fjord).Ophelia 41:261–272.

    Google Scholar 

  • Pedersen, M. F. andJ. Borum. 1996. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae.Marine Ecology Progress Series 142:261–272.

    Article  CAS  Google Scholar 

  • Peters, G. B., W. E. Paznokas, andV. R. Noyes. 1985. A review of nutrient standards for the coastal lagoons in the San Diego region, Volume 1. California Regional Water Quality Control Board, San Diego Region. San Diego, California.

    Google Scholar 

  • Phillip, J. andP. Lavery. 1997. Waychinicup estuary, Western Australia: The influence of freshwater inputs on the benthic flora and fauna.Journal of the Royal Society of Western Australia 80:63–72.

    Google Scholar 

  • Raffaelli, D., P. Balls, S. Way, I. J. Patterson, S. Hohmann, andN. Corp. 1989. Major long-term changes in the ecology of the Ythan estuary, Aberdeenshire, Scotland; How important are physical factors?Aquatic Conservation 9:219–236.

    Article  Google Scholar 

  • Reed, R. H. andG. Russel. 1979. Adaptation to salinity stress in populations ofEnteromorpha intestinalis.Estuarine and Coastal Marine Science 8:251–258.

    Article  Google Scholar 

  • Ritchie, R. J. andA. W. D. Larkum. 1985a. Potassium transport inEnteromorpha intestinalis (L.) Link.Journal of Experimental Botany 36:63–78.

    Article  CAS  Google Scholar 

  • Ritchie, R. J. andA. W. D. Larkum. 1985b. Potassium transport inEnteromorpha intestinalis (L.) Link. II. Effects of medium composition and metabolic inhibitors.Journal of Experimental Botany, 36:394–412.

    Article  CAS  Google Scholar 

  • Rudnicki, R. M. 1986. Dynamics of macroalgae in Tijuana estuary: Response to simulated wastewater addition. Master’s Thesis. San Diego State University, San Diego, California.

    Google Scholar 

  • Ryther, J. H. andW. M. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment.Science 171:1008–1013.

    Article  CAS  Google Scholar 

  • Sfriso, A. andA. Marcomini. 1996. Decline ofUlva growth in the lagoon of Venice.Bioresource Technology 58:299–307.

    Article  CAS  Google Scholar 

  • Sfriso, A., A. Marcomini, andB. Pavoni. 1987. Relationships between macroalgal biomass and nutrient concentrations in a hypertrophic area of the Venice Lagoon Italy.Marine Environmental Research 22:297–312.

    Article  CAS  Google Scholar 

  • Sweeney, R. A. 1989. Generic combustion method for determination of crude protein in feeds: Collaborative study.Journal of the Association of Official Analytical Chemists 72:770–774.

    CAS  Google Scholar 

  • Switala, K. 1999. Determination of ammonia by flow injection analysis. QuikChem Method 10-107-06-1-A. Lachat Instruments, Milwaukee, Wisconsin.

    Google Scholar 

  • Thompson, S. M. andI. Valiela. 1999. Effect of nitrogen loading on enzyme activity of macroalgae in estuaries in Waquoit Bay.Botanica Marina 42:519–529.

    Article  CAS  Google Scholar 

  • Valiela, I., K. Foreman, M. LaMontagne, D. Hersh, J. Costa, P. Peckol, B. DeMeo-Andreson, C. D’Avanzo, M. Babione, C. H. Sham, J. Brawley, andK. Lajtha 1992. Couplings of watersheds and coastal waters sources and consequences of nutrient enrichment in Waquoit Bay Massachusetts.Estuaries 15:443–457.

    Article  CAS  Google Scholar 

  • Waite, T. andR. Mitchell. 1972. The effect of nutrient fertilization on the benthic algaUlva lactuca.Botanica Marina 25: 151–156.

    Article  Google Scholar 

  • Wendt, K. 1999. Determination of nitrate/nitrite by flow injection analysis (low flow method). QuikChem Method 10-107-04-1-A. Lachat Instruments. Milwaukee, Wisconsin.

    Google Scholar 

  • Young, A. J., J. C. Collins, andG. Russell. 1987a. Ecotypic varaiation in the osmotic responses ofEnteromorpha intestinalis (L.) Link.Journal of Experimental Botany 38:1309–1324.

    Article  Google Scholar 

  • Young, A. J., J. C. Collins, andG. Russell. 1987b. Solute regulation in the euryhaline marine algaEnteromorpha prolifera (O. F. Müll) J. Ag.Journal of Experimental Botany 38:1298–1308.

    Article  CAS  Google Scholar 

  • Zharova, N., A. Sfriso, andB. Pavoni. 1998. Fluctuation of macroalgal biomass in the lagoon of Venice: Comparison on different simulation models.Bollettino del Museo Civico di Storia Naturale di Venezia 49:201–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risa A. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, R.A., Fong, P. Physiological responses of a bloom-forming green macroalga to short-term change in salinity, nutrients, and light help explain its ecological success. Estuaries 27, 209–216 (2004). https://doi.org/10.1007/BF02803378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803378

Keywords

Navigation