Skip to main content
Log in

An operator solution of stochastic games

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A class of zero-sum, two-person stochastic games is shown to have a value which can be calculated by transfinite iteration of an operator. The games considered have a countable state space, finite action spaces for each player, and a payoff sufficiently general to include classical stochastic games as well as Blackwell’s infiniteG δ games of imperfect information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bewley and E. Kohlberg,The asymptotic theory of stochastic games, Math. Oper. Res.1 (1976), 197–208.

    MATH  MathSciNet  Google Scholar 

  2. D. Blackwell, InfiniteG δ games with imperfect information, Zastos. Mat.10 (1969), 99–101.

    MathSciNet  MATH  Google Scholar 

  3. D. Blackwell, Operator solution of infiniteG δ games of imperfect information, inProbability, Statistics and Mathematics, Papers in Honor of S. Karlin (T. W. Anderson, K. B. Athreya and D. L. Iglehart, eds.), Academic Press, New York, 1989, pp. 83–87.

    Google Scholar 

  4. D. Blackwell and T. S. Ferguson,The big match, Ann. Math. Statist.39 (1968), 159–163.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Dellacherie and P. A. Meyer,Ensembles analytiques et temps d’arrêt, inSeminaire de Probabilités IX, Lecture Notes in Math. 465, Springer-Verlag, Berlin and New York, 1975, pp. 373–389.

    Google Scholar 

  6. L. Dubins, A. Maitra, R. Purves and W. Sudderth,Measurable, nonleavable gambling problems, Isr. J. Math.67 (1989), 257–271.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. E. Dubins and L. J. Savage,Inequalities for Stochastic Processes, Dover, New York, 1976.

    MATH  Google Scholar 

  8. D. Gillette,Stochastic games with zero-stop probabilities, inContributions to the Theory of Games III, Ann. Math. Studies, No. 39, Princeton University Press, Princeton, 1957, pp. 179–187.

    Google Scholar 

  9. A. J. Hoffman and R. M. Karp,On nonterminating stochastic games, Management Sci.12 (1966), 359–370.

    Article  MathSciNet  Google Scholar 

  10. E. Kohlberg,Repeated games with absorbing states, Ann. Statist.2 (1974), 724–738.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Maitra, V. Pestien and S. Ramakrishnan,Domination by Borel stopping times and some separation properties, Fund. Math.35 (1990), 189–201.

    MathSciNet  Google Scholar 

  12. J.-F. Mertens and A. Neyman,Stochastic games, Int. J. Game Theory10 (1981), 53–66.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Orkin,Infinite games with imperfect information, Trans. Am. Math. Soc.171 (1972), 501–507.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Shapley,Stochastic games, Proc. Natl. Acad. Sci. U.S.A.39 (1953), 1095–1100.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Sudderth,On measurable gambling problems, Ann. Math. Statist.42 (1971), 260–269.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by National Science Foundation Grants DMS-8801085 and DMS-8911548.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maitra, A., Sudderth, W. An operator solution of stochastic games. Israel J. Math. 78, 33–49 (1992). https://doi.org/10.1007/BF02801569

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801569

Keywords

Navigation