Skip to main content
Log in

Chronic antidepressant treatments increase cytochrome b mRNA levels in mouse cerebral cortex

  • Original Articles
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Antidepressant therapies include drugs with a remarkable structural diversity and non-pharmacological interventions, such as electroconvulsive shock. Although the primary neurochemical effects of these treatments may differ, the ≥2- to 3-wk lag in therapeutic onset has led to the hypothesis that adaptive changes in a final common pathway are required for an antidepressant action. Based on this hypothesis, we sought to identify and characterize common changes in gene expression following chronic antidepressant treatments. We utilized a differential display strategy to identify genes that were differentially expressed in mice following chronic treatment with imipramine and electroconvulsive shock. Differential display PCR followed by subcloning, screening by reverse Northern blot, and confirmation by Northern blot revealed a significant increase in the expression of one gene candidate from mouse cortex following antidepressant treatments. The sequence of this 193-bp gene candidate was an exact match to the DNA sequence of mouse mitochondrial cytochrome b. In contrast to the increased mRNA levels of cytochrome b found in cortex, chronic treatment with these antidepressants did not alter mRNA levels in hippocampus, cerebellum, or liver. Moreover, no differences in cortical levels of cytochrome b mRNA were observed after either acute antidepressant treatments or chronic treatment with nonantidepressant drugs (haloperidol and morphine). The observation that chronic, but not acute treatment with imipramine and electroconvulsive shock produces a region-specific change in the levels of mRNA encoding cytochrome b suggests that this enzyme may be involved in the sequence of events resulting in an antidepressant action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews J. M. and Nemeroff C. B. (1994) Comtemporary management of depression.Am. J. Med. 97(S 6A), 24S-32S.

    Article  PubMed  CAS  Google Scholar 

  • Bibb M. J., Van Etten R. A., Wright C. T., Walberg M. W., and Clayton D. A. (1981) Sequence and gene organization of mouse mitochondrial DNA.Cell 26, 167–180.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekaran K., Giordano T, Brady D. R., Stoll J., Martin L. J., and Rapoport S. I. (1994) Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease.Mol. Brain Res. 24, 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Chomezynski P. and Sacchi N. (1987) Single step method of RNA isolation by acid quanidinium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156–159.

    Google Scholar 

  • Church G. M. and Gilbert W. (1984) Genomic sequencing.Proc. Natl. Acad. Sci. USA 81, 1991–1995.

    Article  PubMed  CAS  Google Scholar 

  • Crowe R. R. (1984) Electroconvulsive therapy—a current perspective.N. Engl. J. Med. 311, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Douglass J., McKinzie A. A., and Couceyro P. (1995) PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine.J. Neurosci. 15, 2471–2481.

    PubMed  CAS  Google Scholar 

  • Drevets W. C., Videen T. O., Price J. L., Preskorn S. H., Carmichael S. T., and Raichle M. E. (1992) A functional anatomical study of unipolar depression.J. Neurosci. 12, 3628–3641.

    PubMed  CAS  Google Scholar 

  • Drevets W. C., Price J. L., Simpson J. R. Jr., Todd R. D., Reich T., Vannier M., et al. (1997) Subgenual prefrontal cortex abnormalities in mood disorders.Nature 386, 824–827.

    Article  PubMed  CAS  Google Scholar 

  • Duman R. S., Nibuya M., and Vaidya V. A. (1997) A role for CREB in antidepressant action, inAntidepressants: New Pharmacological Strategies (Skolnick P., ed.), Humana, Totowa, NJ, pp. 173–194.

    Google Scholar 

  • Hatanpaa K., Brady D. R., Stoll J., Rapoport S. I., and Chandrasekaran K. (1996) Neuronal activity and early neurofibrillary tangles in Alzheimer's disease.Ann. Neurol. 40, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Heninger G. R., Delgado P. L., and Charney D. S. (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans.Pharmacopsychiatry 29, 2–11.

    PubMed  CAS  Google Scholar 

  • Hollister L. E. (1986) Current antidepressants.Ann. Rev. Pharmacol. Toxicol. 26, 23–37.

    Article  CAS  Google Scholar 

  • Huang N.-Y., Layer R. T., and Skolnick P. (1997) Is an adaptation ofN-methyl-d-aspartate (NMDA) receptors an obligatory step in antidepressant action? inAntidepressants: New Pharmacological Strategies (Skolnick P., ed.), Humana, Totowa, NJ, pp. 125–143.

    Google Scholar 

  • Liang P. and Pardee A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science 257, 967–971.

    Article  PubMed  CAS  Google Scholar 

  • Liang P., Zhu W., Zhang X., Guo Z., O'Connell R. P., Averboukh L., et al. (1994) Differential display using one-base anchored oligo-dT primers.Nucleic Acids Res. 22, 5763–5764.

    Article  PubMed  CAS  Google Scholar 

  • Livesey F. J. and Hunt S. P. (1996) Identifying changes in gene expression in the nervous system: mRNA differential display.TINS 19, 84–88.

    PubMed  CAS  Google Scholar 

  • Nibuya M., Morinobu S., and Duman R. S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.J. Neurosci. 15, 7539–7547.

    PubMed  CAS  Google Scholar 

  • Nibuya M., Nestler E. J., and Duman R. S. (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus.J. Neurosci. 16, 2365–2372.

    PubMed  CAS  Google Scholar 

  • Nowak G., Li Y., and Paul I. A. (1996) Adaptation of cortical but not hippocampal NMDA receptors after chronic citalopram treatment.Eur. J. Pharmacol. 295, 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Passero S., Nardini M., and Battistini N. (1995) Regional cerebral blood flow changes following chronic administration of antidepressant drugs.Prog. Neuro-Psychopharmacol. Biol. Psychiat. 19, 627–636.

    Article  CAS  Google Scholar 

  • Paul I. A., Nowak G., Layer R. T., Popik P., and Skolnick P. (1994) Adaptation of theN-methyl-d-Aspartate receptor complex following chronic antidepressant treatments.J. Pharmacol. Exp. Ther. 269, 95–102.

    PubMed  CAS  Google Scholar 

  • Richelson E. (1994) Pharmacology of antidepressants—characteristics of the ideal drug.Mayo Clin. Proc. 69, 1069–1081.

    PubMed  CAS  Google Scholar 

  • Rossby S. P. and Sulser F. (1997) Antidepressants: beyond the synapse, inAntidepressants: New Pharmacological Strategies (Skolnick P., ed.), Humana, Totowa, NJ, pp. 195–212.

    Google Scholar 

  • Schwaninger M., Schofl C., Blume R., Rossig L., and Knepel W. (1995) Inhibition by antidepressant drugs of cyclic AMP response element-binding protein/cyclic AMP response element-directed gene transcription.Mol. Pharmacol. 47, 1112–1118.

    PubMed  CAS  Google Scholar 

  • Shader R. I., Fogelman S. M., and Greenblatt D. J. (1997) Newer antidepressants: further reflections.J. Clin. Psychopharmacol. 17, 75–77.

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P., Layer R. T., Popik P., Nowak G., Paul I. A., and Trullas R. (1996) Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression.Pharmacopsychiatry 29, 23–26.

    PubMed  CAS  Google Scholar 

  • Stone E. A. (1983) Problems with the curent catecholamine hypothesis of antidepressant agents: speculations leading to a new hypothesis.Behav. Brain Sci. 6, 555–577.

    Google Scholar 

  • Stryer L. (1988)Biochemistry, 3rd ed. W. H. Freeman, New York.

    Google Scholar 

  • Sugrue M. F. (1985) Delayed biochemical changes following antidepressant treatment.Psychopharmacol. Bull. 21, 619–622.

    PubMed  CAS  Google Scholar 

  • Vetulani J. (1991) The development of our understanding of the mechanism of action of antidepressant drugs.Pol. J. Pharmacol. Pharm. 43, 323–338.

    PubMed  CAS  Google Scholar 

  • Vetulani J. and Sulser F. (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP generating system in limbic forebrain.Nature 257, 495–496.

    Article  PubMed  CAS  Google Scholar 

  • Wang X., Ruffolo R. R. Jr., and Feuerstein G. Z. (1996) mRNA Differential display: application in the discovery of novel pharmacological targets.TIPS 17, 276–279.

    PubMed  CAS  Google Scholar 

  • Whatley S. A., Curti D., and Marchbanks R. M. (1996) Mitochondrial involvement in schizophrenia and other functional psychoses.Neurochem. Res. 21, 995–1004.

    Article  PubMed  CAS  Google Scholar 

  • Wong M. L., Khatri P., Licinio J., Esposito A., and Gold P. W. (1996) Identification of hypothalamic transcripts upregulated by antidepressants.Biochem. Biophys. Res. Commun. 229, 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Wu H. C. and Lee E. H. Y. (1997) Identification of a rat brain gene associated with aging by PCR differential display method.J. Mol. Neurosci. 8, 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev A. G. and Faden A. I. (1995) Molecular strategies in CNS injury.J. Neurotrauma 12, 767–777.

    Article  PubMed  CAS  Google Scholar 

  • Yee F. and Yolken R. H. (1997) Identification of differentially expressed RNA transcripts in neuropsychiatric disorders.Biol. Psychiatr. 41, 759–761.

    Article  CAS  Google Scholar 

  • Zhang H., Zhang R., and Liang P. (1996) Differential screening of gene expression difference enriched by differential display.Nucleic Acids Res. 24, 2454–2455.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dr. Strakhova contributed equally to the study and should be considered a co-lead author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, NY., Strakhova, M., Layer, R.T. et al. Chronic antidepressant treatments increase cytochrome b mRNA levels in mouse cerebral cortex. J Mol Neurosci 9, 167–176 (1997). https://doi.org/10.1007/BF02800499

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02800499

Index Entries

Navigation