Skip to main content
Log in

Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

An understanding of the optical properties of biological media and cells is essential to the development of noninvasive optical studies of tissues. Unicellular organisms offer a unique opportunity to investigate the factors affecting light propagation, since they can be manipulated in ways impossible for more complex biological samples. In this study, we examined optical absorption and scattering properties of strongly multiple scattering yeast suspensions by means of near-infrared (NIR) time-resolved spectroscopy (TRS) and a sample substitution method. We determined the critical parameters for photon migration by varying the cell organelle content, the cell ploidy, the cell size, and the concentration of suspended cells. The results indicate that the photon absorption is insensitive to cell differentiation and that the cell volume is the primary factor determining light-scattering property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NIR:

near-infrared

TRS:

time-resolved spectroscopy

μa and μ s :

absorption and reduced scattering coefficients (Napierian log base), respectively

μa |Patt and μ s | Patt:

absorption and reduced scattering coefficients, respectively, obtained by fitting the TRS data

αtr :

transport cross-section.

References

  1. Patterson, M. S., Chance, B., and Wilson, B. C. (1989) Time Resolved Reflectance and Transmittance for the noninvasive measurement of tissue optical properties.Appl. Opt. 28, 2331–2336.

    Google Scholar 

  2. Wilson, B. C., Sevick, E., Patterson, M. S., and Chance, B. (1992) Time-dependent optical spectroscopy and imaging for biomedical applications.Proc. IEEE 80, 918–930.

    Article  CAS  Google Scholar 

  3. Chance, B., Leigh, J., Miyake, H., Smith, D., Nioka, S., Greenfeld, R., Finlander, M., Kaufmann, K., Levy, W., Young, M., Cohen, P., Yoshioka, H., and Boretsky, R. (1988) Comparison of time-resolved and un-resolved measurements of deoxyhemoglobin in brain.Proc. Natl. Acad. Sci. USA 85, 4971–4975.

    Article  PubMed  CAS  Google Scholar 

  4. Chance, B., Nioka, S., Kent, J., Mc Cully, K., Fountain, M., Greenfeld, R., and Holtom, G. (1988) Time-resolved spectroscopy of hemoglobin and myoglobin resting and ischemic muscle.Anal. Biochem. 174, 698–707.

    Article  PubMed  CAS  Google Scholar 

  5. Sevick, E. M., Chance, B., Leigh, J., Nioka, S., and Maris, M. (1991) Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation.Anal. Biochem. 195, 330–351.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, H., Miwa, M., Beauvoit, B., Wang, N. G., and Chance, B. (1993) Characterization of absorption and scattering properties of small-volume biological samples using Time-Resolved Spectroscopy.Anal. Biochem. 213, 378–385.

    Article  PubMed  CAS  Google Scholar 

  7. Van de Hulst, H. C. (1957)Light Scattering by Small Particles. Wiley, New York, p. 509.

    Google Scholar 

  8. Ishimaru, A. (1978)Wave Propagation and Scattering in Random Media. Academic, New York, p. 372.

    Google Scholar 

  9. Bohren C. V., and Huffman, D. R. (1983)Absorption and Scattering of Light by Small Particles. Wiley, New York, p. 530.

    Google Scholar 

  10. Kerker, M. (1983) Elastic and inelastic light scattering in flow cytometry.Cytometry 4, 1–10.

    Article  PubMed  CAS  Google Scholar 

  11. Cross, D. A., and Latimer, P. (1972) Angular dependence of scattering fromEscherichia coli cells.Appl. Opt. 11, 1225–1228.

    Google Scholar 

  12. Reynolds, L., Johnson, C., and Ishimaru, A. (1976) Diffusive reflectance from a finite blood medium: applications to the modeling of fiber optic catheters.Appl. Opt. 15, 2059–2067.

    Google Scholar 

  13. Sloot, P. M. A., Hoekstra, A. G., and Figdor, C. G. (1988) Osmotic response of lymphocytes measured by means of forward light scattering: theoretical considerations.Cytometry 9, 636–641.

    Article  PubMed  CAS  Google Scholar 

  14. Steinke, J. M., and Shepherd, A. P. (1988) Comparison of Mie theory and the light scattering of red blood cells.Appl. Opt. 27, 4027–4033.

    Google Scholar 

  15. Frank, K. H., Kessler, M., Appelbaum, K., Albrecht, H. P., and Mauch, E. D. (1989) Measurements of angular distributions of Rayleigh and Mie scattering events in biological models.Phys. Med. Biol. 34, 1901–1916.

    Article  PubMed  CAS  Google Scholar 

  16. Segel, G., Cokelet, G. R., and Lichtman, M. A. (1981) The measurement of lymphocyte volume: importance of reference particle deformability and counting solution tonicity.Blood 57, 894–899.

    PubMed  CAS  Google Scholar 

  17. Baldwin, W. W., and Kubitschek, H. E. (1984) Buoyant density variation during the cell cycle ofSaccharomyces cerevisiae.J. Bacteriol. 158, 701–704.

    PubMed  CAS  Google Scholar 

  18. Tyson, C. B., Lod, P. G., and Wheals, A. E. (1979) Dependence of size ofSaccharomyces cerevisiae cells on growth rate.J. Bacteriol. 138, 92–98.

    PubMed  CAS  Google Scholar 

  19. Baroni, M. D., Martegani, E., Monti, P., and Alberghina, L. (1989) Cell size modulation by CDC25 and RAS2 genes inSaccharomyces cerevisiae.Mol. Cell. Biol. 9, 2715–2723.

    PubMed  CAS  Google Scholar 

  20. Varoni, M., Vai, M., Popolo, L., and Alberghina, L. (1983) Structural heterogeneity in populations of the budding yeastSaccharomyces cerevisiae.J. Bacteriol. 156, 1282–1291.

    Google Scholar 

  21. Adams, J. (1977) The interrelationship of cell growth and division in haploid and diploid cells ofSaccharomyces cerevisiae.Exp. Cell Res. 106, 267–275.

    Article  PubMed  CAS  Google Scholar 

  22. Lorincz, A., and Carter, B. L. A. (1979) Control of cell size at bud initiation inSaccharomyces cerevisiae.J. Gen. Microbiol. 113, 287–295.

    Google Scholar 

  23. Johnston, G. C., Ehrhardt, C. W., Lorincz, A., and Carter, B. L. A. (1979) Regulation of cell size in the yeastSaccharomyces cerevisiae.J. Bacteriol. 137, 1–5.

    PubMed  CAS  Google Scholar 

  24. Fujime, S., Takasaki-Ohsita, M., and Miyamoto, S. (1988) Dynamic light scattering from polydisperse suspensions of large spheres. Characterization of isolated secretory granules.Biophys. J. 54, 1179–1184.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beauvoit, B., Liu, H., Kang, K. et al. Characterization of absorption and scattering properties for various yeast strains by time-resolved spectroscopy. Cell Biophysics 23, 91–109 (1993). https://doi.org/10.1007/BF02796508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02796508

Index Entries

Navigation