Skip to main content
Log in

Magnesium and methionine deprivation affect the response of rats to boron deprivation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A series of nine experiments were done to obtain further evidence that boron might be involved in major mineral metabolism (Ca, P, and Mg), thus indicating that boron is an essential nutrient for animals. Eight factorially arranged experiments of 6–10 wk durations were done with weanling Sprague-Dawley male rats. One factorially arranged experiment was done with weanling spontaneously hypertensive rats. The variables in each experiment were dietary boron supplements of 0 and 3 μg/g, and dietary magnesium supplements of either 200 (Experiments 1–3) or 100 (Experiments 4–9) and 400 μg/g. In Experiments 7 and 9, a third variable was dietary manganese supplements of 25 and 50 μg/g. Methionine status was varied throughout the series of experiments by supplementing the casein-based diet with methionine and arginine. Findings were obtained indicating that the severity of magnesium deprivation and the methionine status of the rat strongly influence the extent and nature of the interaction between magnesium and boron, and the response to boron deprivation. When magnesium deprivation was severe enough to cause typical signs of deficiency, a significant interaction between boron and magnesium was found. Generally, the interaction was characterized by the deprivation of one of the elements making the deficiency signs of the other more marked. The interaction was most evident when the diet was not supplemented with methionine and especially when the diet contained luxuriant arginine. Signs of boron deprivation were also more marked and consistent when the diet contained marginal methionine and luxuriant arginine. Among the signs of boron deprivation exhibited by rats fed marginal methionine were depressed growth and bone magnesium concentration, and elevated spleen wt/body wt and kidney wt/body wt ratios. Because the boron supplement of 3 μg/g did not make the dietary intake of this element unusual, it seems likely that the response of the rats to dietary boron in the present study were manifestations of physiological, not pharmacological, actions, and support the hypothesis that boron is an essential nutrient for the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hove, C. A. Elvehjem, and E. B. Hart,Am. J. Physiol. 127, 689 (1939).

    CAS  Google Scholar 

  2. E. Orent-Keiles,Proc. Soc. Exp. Biol. Med. 44, 199 (1941).

    Google Scholar 

  3. J. D. Teresi, E. Hove, C. A. Elvehjem, and E. B. Hart,Am. J. Physiol. 140, 513 (1944).

    CAS  Google Scholar 

  4. J. T. Skinner and J. S. McHargue,Am. J. Physiol. 143, 385 (1945).

    CAS  Google Scholar 

  5. R. H. Follis, Jr.,Am. J. Physiol. 150, 520 (1947).

    CAS  Google Scholar 

  6. C. D. Hunt and F. H. Nielsen,Trace Element Metabolism in Man and Animals, vol. 4, J. McC. Howell, J. M. Gawthorne, and C. L. White, eds., Australian Academy of Science, Canberra, 1981, pp. 597–600.

    Google Scholar 

  7. C. D. Hunt, T. R. Shuler, and F. H. Nielsen,Spurenelement Symposium, M. Anke, W. Baumann, H. E. Braunlich, and C. Bruckner, eds., Karl Marx Universitat Leipzig and Friedrich Schiller Universitat, Jena, GDR, 1983, pp. 149–155.

    Google Scholar 

  8. M. E. Shils,Trace Elements in Human Health and Disease, vol. II, A. S. Prasad and D. Oberleas, eds., Academic, New York, NY, 1976 pp. 23–46.

    Google Scholar 

  9. A. Berthelot and J. Esposito,J. Amer. Coll. Nutr. 4, 343 (1983).

    Google Scholar 

  10. F. H. Nielsen and B. Bailey,Lab. Anim. Sci. 29, 502 (1979).

    PubMed  CAS  Google Scholar 

  11. F. H. Nielsen, D. R. Myron, S. H. Givand, and D. A. Ollerich,J. Nutr. 105, 1607 (1975).

    PubMed  CAS  Google Scholar 

  12. F. H. Nielsen, D. R. Myron, S. H. Givand, T. J. Zimmerman, and D. A. Ollerich,J. Nutr. 105, 1620 (1975).

    PubMed  CAS  Google Scholar 

  13. B. N. Wu, D. M. Medeiros, K.-N. Lin, and B. M. Thorne,Nutr. Res. 4, 305 (1984).

    Article  CAS  Google Scholar 

  14. H. Scheffé,The Analysis of Variance, Wiley New York, NY, 1959, pp. 90–137.

    Google Scholar 

  15. K. Keshavarz and H. L. Fuller,J. Nutr. 101, 217 (1971).

    PubMed  CAS  Google Scholar 

  16. J. A. Sturman,Sulfur Amino Acids Biochemical and Clinical Aspects, Progress in Clinical and Biological Research, vol. 125, K. Kuriyama, R. J. Huxtable and H. Iwata, eds., Liss Inc., New York, NY, 1983, pp. 281–295.

    Google Scholar 

  17. B. L. Robeson, T. L. Maddox, and W. G. Martin,J. Nutr. 109, 1383 (1979).

    PubMed  CAS  Google Scholar 

  18. M. H. Stipanuk,Ann. Rev. Nutr. 6, 179 (1986).

    Article  CAS  Google Scholar 

  19. M. Bara and A. Guiet-Bara,Magnesium 3, 212 (1984).

    CAS  Google Scholar 

  20. J. F. Jackson and K. S. R. Chapman,Trace Elements in Soil-Plant-Animal Systems, D. J. D. Nicholas and A. R. Egan, Eds., Academic, New York, NY, 1975, pp. 213–225.

    Google Scholar 

  21. D. H. Lewis,New Phytol. 84, 209 (1980).

    Article  CAS  Google Scholar 

  22. A. S. Pollard, A. S. Parr, and B. C. Loughman,J. Exp. Bot. 28, 831 (1977).

    Article  CAS  Google Scholar 

  23. E. Haberman,Naunyn-Schmiedeberg’s Arch. Pharmacol. 323, 269 (1983).

    Article  Google Scholar 

  24. T. S. S. Chen, C.-J. Chang, and H. G. Floss,J. Antibiotics 33, 1316 (1980).

    CAS  Google Scholar 

  25. A. J. Parr and B. C. Loughman,Annu. Proc. Phytochem. Soc. Eur. 21, 87 (1983).

    CAS  Google Scholar 

  26. D. J. Pilbeam and E. A. Kirkby,J. Plant Nutrition 6, 563 (1983).

    CAS  Google Scholar 

  27. W. M. Duggar,Encyl. Plant Physiol., New Ser. 15B, 626 (1983).

    Google Scholar 

  28. T. Tanada,J. Plant Nutr. 6, 743 (1983).

    Article  CAS  Google Scholar 

  29. F. H. Nielsen,J. Nutr. 115, 1239 (1985).

    PubMed  CAS  Google Scholar 

  30. M. Nuurtamo, P. Varo, E. Saari, and P. Koivistoinen,Acta Agric. Scand. Suppl.22, 57–76, 77–87 (1980).

    CAS  Google Scholar 

  31. P. Varo and P. Koivistoinen,Acta Agric. Scand. Suppl.22, 165 (1980).

    CAS  Google Scholar 

  32. P. Varo, M. Nuurtamo, E. Saari and P. Koivistoinen,Acta Agric. Scand. Suppl.22, 27–35, 37–55, 89–113, 115–126, 127–139, 141–160 (1980).

    CAS  Google Scholar 

  33. A. K. Furr, L. H. MacDaniels, L. E. St. John Jr., W. H. Gutenmann, I. S. Pakkala, and D. J. Lisk,Bull. Environ. Contam. Toxicol. 21, 392 (1979).

    Article  PubMed  CAS  Google Scholar 

  34. A. K. Furr, T. F. Parkinson, C. A. Bache, W. H. Gutenmann, I. S. Pakkala, G. S. Stoewsand, and D. J. Lisk,Nutr. Rpts. Int. 20, 765 (1979).

    CAS  Google Scholar 

  35. J. Ploquin,Bull. Soc. Sci. Hyg. Alimen. 55, 70 (1967).

    CAS  Google Scholar 

  36. A. S. Szabo,Lebensmittelindustrie 26, 549 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mentions of a trademark or proprietary product does not consitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, F.H., Shuler, T.R., Zimmerman, T.J. et al. Magnesium and methionine deprivation affect the response of rats to boron deprivation. Biol Trace Elem Res 17, 91–107 (1988). https://doi.org/10.1007/BF02795449

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02795449

Index Entries

Navigation