Skip to main content
Log in

Anomalously slow mobility of fluorescent lipid probes in the plasma membrane of the yeastSaccharomyces cerevisiae

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We measured the lateral mobility of two fluorescent lipid probes dioctadecylindocarbocyanine (dil) and tetramethyl rhodamine phosphatidylethanolamine (R-PE) in the plasma mem branesof Saccharomyces cerevisiae inol andopi 3 spheroplasts. These are well-characterized strains with mutations in the inositol and phosphatidylcholine biosynthetic pathways. Membrane phospholipid composition was altered by growing these mutants in the presence or absence of inositol and choline. Lateral mobil ity was measured by fluorescence recovery after photobleaching (FRAP). Microscopic fluorescence polarization employing CCD digital imaging produced an ordered orientation distribution of the lipid probe dil, confirming that at least one of the probes was largely incorporated into the bilayer membrane. Our results demonstrated anomalously slow mobility of both lipid probes for both mutants, regardless of whether the lipid composition was near normal or dramatically altered in relative composition of phosphatidylinositol and phosphatidylcholine. Trypsinization of the spheroplasts to remove surface proteins resulted in markedly increased lateral mobility. However, even in trypsinized sphero plasts, mobility was still somewhat lower than the mobility ob served in the membrane of mammalian cells, such as rat smooth muscle culture cells tested here for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod, D. 1979. Carbocyanine dye orientation in red cell mem brane studied by microscopic fluorescence polarization.Biophys. J. 26:557–573

    Article  PubMed  CAS  Google Scholar 

  • Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. Webb, W.W. 1976. Mobility measurements by analysis of fluores cence photobleaching recovery.Biophys. J. 16:1055–1069.

    PubMed  CAS  Google Scholar 

  • Axelrod, D., Wight, A., Webb, W., Horwitz, A. 1978. Influence of membrane lipids on acetylcholine receptor and lipid probe diffusion in cultured myotube membrane.Biochemistry 17:3604–3609.

    Article  PubMed  CAS  Google Scholar 

  • Badley, R.A., Martin, W.G., Schneider, H. 1973. Dynamic be havior of fluorescent probes in lipid bilayer model membranes.Biochemistry 12:268–275.

    Article  PubMed  CAS  Google Scholar 

  • Bevington, P.R. 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York

    Google Scholar 

  • Bloch, R.J., Velez, M., Krikorian, J., Axelrod, D. 1989. Microfilaments and actin-associated proteins at sites of substrate attachment in acetylcholine receptor clusters of cultured rat myotubes.Exp. Cell Res. 182:583–596

    Article  PubMed  CAS  Google Scholar 

  • Bloom, J.A., Webb, W.W. 1983. Lipid diffusibility in the intact erythrocyte membrane.Biophys. J. 42:295–305

    PubMed  CAS  Google Scholar 

  • Bottema, C.D.K., Rodriguez, R.J., Parks, L.W. 1985. Influence of sterol structure on yeast plasma membrane properties.Biochim. Biophys. Acta 813:313–320

    Article  PubMed  CAS  Google Scholar 

  • Boullier, J.A., Brown, B.A., Bush, J.C., Jr., Barisas, G.B. 1986. Lateral mobility of a lipid analog on the membrane of irrevers ible sickle erythrocytes.Biochim. Biophys. Ada 856:301–309

    Article  CAS  Google Scholar 

  • De Laat, S.W., Van der Saag, P.T., Elson, E.L., Schlessinger, J. 1980. Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells.Proc. Natl.Acad. Sci. USA 77:1526–1528

    Article  PubMed  Google Scholar 

  • Donahue, T.F., Henry, S.A. 1981. Myoinositol-1-phosphate synthase: Characteristics of the enzyme and identification of its structural gene in yeast.J. Biol. Chem. 256:7077–7085

    PubMed  CAS  Google Scholar 

  • Dragsten, P., Henkart, P., Blumenthal, R., Weinstein, J., Schles singer, J. 1979. Lateral diffusion of surface immunoglobulin, Thy-1 antigen, and a lipid probe in lymphocyte plasma mem branes.Proc. Natl. Acad. Sei. USA 76:5163–5167

    Article  CAS  Google Scholar 

  • Edidin, M. 1987. Rotational and lateral diffusion of membrane proteins and lipids: phenomena and function.Curr. Top. Membr. Transp. 29:91–127

    CAS  Google Scholar 

  • Eldridge, CA., Elson, E.L., Webb, W.W. 1980. Fluorescence photobleaching recovery measurements of surface lateral mo bilities on normal and SV40-transformed mouse fibroblasts.Biochemistry 19:2075–2079

    Article  PubMed  CAS  Google Scholar 

  • Elson, E.F., Yguerabide, J. 1979. Membrane dynamics of differ entiating cultured embryonic chick skeletal muscle cells by fluorescence microscopy techniques.J. Supramol. Struct. 12:47–61

    Article  PubMed  CAS  Google Scholar 

  • Foley, M., Brass, J.M., Birmingham, J., Cook, W.R., Garland, P.B., Higgins, CF., Rothfield, L.I. 1989. Compartmentalization of the periplasm at cell division sites inEscherichia coli as shown by fluorescence photobleaching experiments.Mol. Microbiol. 3:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Foley, M., Kusel, J.R., Garland, P.B. 1988. Changes in the orga nization of the surface membrane upon transformation of ceracariae to schistosomula of the helminth parasiteSehistosoma mansoni.Parasitology 96:85–97

    PubMed  Google Scholar 

  • Foley, M., MacGregor, A.N., Kusel, J.R., Garland, P.B., Downie, T., Moore, I. 1986. The lateral diffusion of lipid probes in the surface membrane ofSehistosoma mansoni.J. Cell. Biol. 103:807–818

    Article  PubMed  CAS  Google Scholar 

  • Gaynor, P.M., Hubbell, S., Schmidt, A.J., Lina, R.A., Minskoff, S.A., Greenberg, M.L. 1991. Regulation of phosphatidylgly-cerolphosphate synthase inSaccharomyces cerevisiae by fac tors affecting mitochondrial development.J. Bacterial. 173:6124–6131

    CAS  Google Scholar 

  • Golan, D.E., Furlong, ST., Brown, C.S., Caulfield, J.P. 1988. Monopalmitoylphosphatidylcholine incorporation in human erythrocyte ghost membranes causes protein and lipid immo bilization and cholesterol depletion.Biochemistry 27:2661–2667

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, M.L., Klig, L.S., Letts, V.A., Shicker Loewy, B., Henry, S.A. 1983. Yeast mutant defective in phosphatidylcholine synthesis.J. Baderiol. 153:791–799

    CAS  Google Scholar 

  • Henry, S.A. 1982. Membrane lipids of yeast: biochemical and genetic studies. In: The Molecular Biology of the Yeast Sac charomyces: Metabolism and Gene Expression. J.N. Strathern, E.W. Jones, J.R. Broach, editors, pp. 101–158. CSH Biol. Lab., Cold Spring Harbor

    Google Scholar 

  • Henry, S.A., Greenberg, M.L., Letts, V., Shicker, B., Klig, L., Atkinson, K.D. 1981. Genetic regulation of phospholipid synthesis in yeast. In: Current Developments in Yeast re search: Advances in Biotechnology. G. Stewart and J. Russell editors, pp. 311–316. Pergamon, New York

    Google Scholar 

  • Henry, S.A., Keith, A.D. 1971. Membrane properties of satu rated fatty acid mutants of yeast revealed by spin labels.Chem. Phys. Lipids 7:245–265

    Article  PubMed  CAS  Google Scholar 

  • Henry, S.A., Keith, A.D., Snipes, W. 1976. Changes in the re striction of molecular rotational diffusion of water-soluble spin labels during fatty acid starvation of yeast.Biophys. J. 16:641–653.

    PubMed  CAS  Google Scholar 

  • Jacobson, K. 1980. Fluorescence recovery after photobleaching: lateral mobility of lipids and proteins in model membranes and on single cell surfaces. In: Lasers in Biology and Medicine, ed. F. Hillenkamp, R. Pratesi, and CA. Sacchi editors, pp. 271–288. Plenum, New York

    Google Scholar 

  • Jacobson, K. 1983. Lateral diffusion in membranes.Cell Motil. 3:367–373

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, K., Ishihara, A., Inman, R. 1987. Lateral diffusion of proteins in membranes.Anna. Rev. Physiol. 49:163–175

    Article  CAS  Google Scholar 

  • Johnson, P., Garland, P.B., Campbell, P., Kusel, J.R. 1982. Changes in the properties of the surface membrane ofSchistosoma mansoni during growth as measured by fluorescence recovery after photobleaching.FEBS Lett. 141:132–135

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, M.W., Foley, M., Kuo, Y.-M., Kusel, J.R., Garland, P.B. 1987. Biophysical properties of the surface lipid of parasitic nematodes.Mol. Biochem. Parasitol. 22:233–240

    Article  PubMed  CAS  Google Scholar 

  • Lees, N.D., Bard, M., Kemple, M.D., Haak, R.A., Kleinhans, F.W. 1979. ESR determination of membrane order parameter in yeast sterol mutants.Biochim. Biophys. Acta 553:469–475

    Article  PubMed  CAS  Google Scholar 

  • Lentz, B.R. 1988. Organization of membrane lipids by intrinsic membrane proteins. In: Lipid Domains: the Relationship to Membrane Function, pp. 141–161. Alan R. Liss, New York

    Google Scholar 

  • McLean-Bowen, CA., Parks, L.W. 1981. Corresponding changes in kynurenine hydroxylase activity, membrane fluid ity, and sterol composition inSaccharomyces cerevisiae mito chondria.J. Bacteriol. 143:1325–1332

    Google Scholar 

  • Koppel, D.E., Sheetz, M.P., Schindler, M. 1981. Matrix control of protein diffusion in biological membranes.Proc. Natl. Acad. Sci. USA 78:3576–3580

    Article  PubMed  CAS  Google Scholar 

  • Mishra, P., Prasad, R. 1989. Relationship between fluidity and lalanine transport in a fatty acid auxotroph ofSaccharomyces cerevisiae.Biochem. Int. 19:1019–1030

    PubMed  CAS  Google Scholar 

  • Nathan, P., Gomes, S.L., Hahnenberger, K., Newton, A., Sha piro, L. 1986. Differential localization of membrane receptor chemotaxis proteins in theCaulobacter predivisional cell.J. Mol. Biol. 191:433–440

    Article  PubMed  CAS  Google Scholar 

  • Patton, J.L., Lester, R.L. 1991. The phosphoinositol sphingolipids ofSaccharomyces cerevisiae are highly localized in the plasma membrane.J. Bacteriol. 173:3101–3108

    PubMed  CAS  Google Scholar 

  • Peters, R. 1981. Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. In: Cell Biology International Reports, pp. 733–760. Academic, London

    Google Scholar 

  • Peters, R., Richter, H.-P. 1981. Translational diffusion in the plasma membrane of sea urchin eggs.Dev. Biol. 86:285–293

    Article  PubMed  CAS  Google Scholar 

  • Peters, R., Sardet, C, Richter, H.-P. 1984. Mobility of membrane lipids and proteins at the animal and vegetal pole of the sea urchin egg.Dev. Growth Differ. 26:105–110

    Article  Google Scholar 

  • Petty, H.R., Smith, L.M., Fearon, D.T., McConnell, H.M. 1980. Lateral distribution and diffusion of the C3b receptor of com plement, HLA antigens, and lipid probes in peripheral blood leukocytes.Proc. Natl. Acad. Sei. USA 77:6587–6591

    Article  CAS  Google Scholar 

  • Schlessinger, J., Axelrod, D., Koppel, D.E., Webb, W.W., Elson, E.L. 1977. Lateral transport of a lipid probe and labeled proteins on a cell membrane.Science 195:307–309

    Article  PubMed  CAS  Google Scholar 

  • Smith, S.W., Lester, R.L. 1974. Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate.J. Biol. Chem. 249:3395–3405

    PubMed  CAS  Google Scholar 

  • Thompson, N.L., Axelrod, D. 1980. Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane.Biochim. Biophys. Acta 597:155–165

    Article  PubMed  CAS  Google Scholar 

  • Tocanne, J.-F., Dupou-Czanne, L., Lopez, A., Tournier, J.-F. Lipid lateral diffusion and membrane organization.FEBS Lett. 257:10–16

  • Vaz, W.L.C, Goodsaid-Zalduondo, F., Jacobson, K. 1984. Lat eral diffusion of lipids and proteins in bilayer membranes.FEBS Lett. 174:199–207

    Article  CAS  Google Scholar 

  • Wells, G.B., Lester, R.L. 1983. The isolation and characteriza tion of a mutant strain ofSaccharomyces cerevisiae that re quires a long chain base for growth and for synthesis of phosphosphingolipids.J. Biol. Chem. 258:10200–10203

    PubMed  CAS  Google Scholar 

  • Wolf, D.E. 1987. Diffusion and the control of membrane regionalization.Ann. NY Acad. Sci. 513:247–261

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D.E., Edidin, M., Handyside, A.H. 1981. Changes in the organization of the mouse egg plasma membrane upon fertil ization and first cleavage: Indications from the lateral diffusion rates of fluorescent lipid analogs.Dev. Biol. 85:195–198

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D.E., Henkart, P., Webb, W.W. 1980. Diffusion, patching, and capping of stearoylated dextrans on 3T3 cell plasma mem branes.Biochemistry 19:3893–3904

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D.E., Kinsey, W., Lennarz, W., Edidin, M. 1981. Changes in the organization of the sea urchin egg plasma membrane upon fertilization: Indications from the lateral diffusion rates of lipid soluble fluorescent dyes.Dev. Biol. 81:133–138

    Article  PubMed  CAS  Google Scholar 

  • Wolf, D.E., Lipscomb, A.C., Maynard, V.M. 1988. Causes of nondiffusing lipid in the plasma membrane of mammalian sper matozoa.Biochemistry 27:860–865

    Article  PubMed  CAS  Google Scholar 

  • Yechiel, E., Edidin, M. 1987. Micrometer-scale domains in fibroblast plasma membranes.J. Cell Biol. 105:755–760

    Article  PubMed  CAS  Google Scholar 

  • Yguerabide, J., Stryer, L. 1971. Fluorescence spectroscopy of an oriented model membrane.Proc. Natl. Acad. Sci. USA 68:1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Zlatonov, I.V., Foley, M., Birmingham, J., Garland, P.B. 1987. Developmental changes in the lateral diffusion of Leydig cell membranes measured by the FRAP method.FEBS Lett. 222:47–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenberg, M.L., Axelrod, D. Anomalously slow mobility of fluorescent lipid probes in the plasma membrane of the yeastSaccharomyces cerevisiae . J. Membrain Biol. 131, 115–127 (1993). https://doi.org/10.1007/BF02791320

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02791320

Key Words

Navigation