Skip to main content
Log in

Trace element content in human milk during lactation of preterm newborns

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study has been finalized to perform the content of Zn, Cu, Cr, Se, Mn, F, Mo, Ni, and B in the preterm human milk over 21 d of lactation. Trace element (TE) contents were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-MS), and median concentrations of Zn, Cu, Cr, Se, Mn, and F observed in preterm milk did not demonstrate significant differences in comparison to levels shown in term milk. A statistical significant difference (p<0.05) has been found among Mo, Ni, and B content in preterm milk for every stage of lactation. TE content of infant blood founded concentrations of Mo in preterm babies significantly (p<0.01) lower than in term offsprings. Similar values of other TE content were obtained in blood of preterm, and term newborns. These findings point to the need for a considerable reassessment of the existing dietary recommendation for Mo content in infant feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Milner, Trace minerals in the nutrition of children,J. Pediatr. 117, 147–155 (1990).

    Article  Google Scholar 

  2. B. L. O’dell, Bioavailability and interactions among trace elements, inTrace Elements in Nutrition of Children, R. K. Chandra, ed., Raven, New York, pp. 41–62 (1985).

    Google Scholar 

  3. F. A. Jones, New concepts in human nutrition in the twentieth century: the special role of micro-nutrients,J. Nutr. Med. 4, 99–113 (1994).

    Article  Google Scholar 

  4. C. E. Casey, K. M. Hambidge, and M. C. Neville, Studies in human lactation: zinc, copper, manganese and chromium in the first month of lactation,Am. J. Clin. Nutr. 41, 1193–1200 (1985).

    PubMed  CAS  Google Scholar 

  5. N. I. Ward, F. R. Shakra, S. F. Durrant, J. Thomson, J. M. Hovercroft, and L. Fadegarian, Inductively plasma mass spectrometry (ICP.MS) in biological studies for multi-element analysis and isotope ratios, inTrace Elements in Man and Animal, B. Morncilovic, ed., Zagreb IMI, pp. 335–336 (1991).

    Google Scholar 

  6. R. M. Parr, E. M. Maeyer, V. G. Iyengar, A. R. Byrne, G. F. Kirkbright, G. Schoch, L. Niinisto, O. Pineda, H. L. Vis, Y. Hofvanden, and A. Omolulu, Minor and trace elements in human milk from Guatemala, Hungary, Nigeria, Philippines, Sweden and Zaire,Biol. Trace Elem., Res. 29, 51–75 (1991).

    CAS  Google Scholar 

  7. L. Perrone, L. Di Palma, R. Di Toro, G. Gialanella, and R. Moro, Trace elements content of human milk during lactation,J. Trace Elem. Electrolytes Health Dis. 7, 245–247 (1993).

    PubMed  CAS  Google Scholar 

  8. B. Lonnerdal, Trace elements in human milk, inTrace Elements in Nutrition of Children, vol. 23, R. K. Chandra, ed., Raven, New York, pp. 153–171 (1991).

    Google Scholar 

  9. F. H. Nielsen, Possible future implications of trace elements in human health and disease, inEssential and toxic Trace Elements in Human Health and Disease, vol. 18, A. S. Prasad, ed., Alan R. Liss, New York, pp. 277–292 (1988).

    Google Scholar 

  10. P. Anders, Comparison of trace elements in milk of four species,J. Dairy Sci. 75, 3050–3055 (1992).

    Article  Google Scholar 

  11. K. M. Hambidge, C. E. Casey, and N. F. Krebs, Zinc, inTrace Elements in Human and Animal Nutrition, vol. 2, W. Mertz, ed., Academic, Orlando, pp. 1–137 (1986).

    Google Scholar 

  12. J. C. L. Shaw, Parenteral nutrition in the management of sick low birthweight infants,Ped. Clin. North Am. 20, 333–358 (1973).

    Google Scholar 

  13. B. Lonnerdal, J. G. Bell, and C. L. Keen, Copper absorption from human milk, cow’s milk and infant formulas using a suckling rat model,Am. J. Clin. Nutr. 42, 836–844 (1985).

    PubMed  CAS  Google Scholar 

  14. A. Flynn, Minerals and trace elements in milk,Adv. Food Nutr. Res. 36, 209–252 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. S. Mannan and M. F. Picciano, Influence of maternal selenium status on human milk selenium concentration and glutathione peroxidase activity,Am. J. Clin. Nutr. 46, 95–100 (1987).

    PubMed  CAS  Google Scholar 

  16. J. Kunpulainen, E. Vuori, P. Knitunen, S. Makinen, and R. Kara, Longitudinal study on the dietary selenium intake of exclusively breast-fed infants and their mothers in Finland,Int. J. Vit. Nutr. Res. 53, 420–426 (1983).

    Google Scholar 

  17. M. Williams, Selenium and glutathione peroxidase in, mature human milk,Proc. Univ. Otago Med. Sch. 61, 20, 21 (1983).

    Google Scholar 

  18. R. M. Feeley, R. R. Eitenmuller, J. B. Jones, and H. Barnhart, Manganese, cobalt, nickel, silicon and aluminium in human milk during early lactation,Ped. Proc. 42, 921 (abstract) (1983).

    Google Scholar 

  19. S. Esala, E. Vnori, and A. Helle, Effect of maternal fluorine intake on breast milk fluorine content,Br. J. Nutr. 48, 201–204 (1989).

    Article  Google Scholar 

  20. C. J. Spak, L. I. Hardell, and P. De Chateau, Fluoride in human milk,Acta Paediatr. Scand. 72, 699–701 (1983).

    PubMed  CAS  Google Scholar 

  21. K. A. V. R. Krishnamachari, Fluorine, inTrace Elements in Human and Animal Nutrition, vol. 1, W. Mertz, ed. Academic, San Diego, pp. 365–415 (1987).

    Google Scholar 

  22. D. Bouglé, P. Foucault, J. Vorin, F. Bureau, J. F. Viel, R. Vénézia, M. Drosdowsky, G. Muller, and J. F. Duhamel, Taux du molybdene, du sèlènium et du cuivre plasmatiques à l’accouchement,Arch. Fr. Pédiatr.,46, 95–98 (1989).

    PubMed  Google Scholar 

  23. P. Anders, Breast milk chromium and its association with chromium intake, chromium excretion and serum chromium,Am. J. Clin. Nutr. 57, 519–523 (1993).

    Google Scholar 

  24. C. E. Casey and M. C. Neville, Studies in human lactation 3: molybdenum and nickel in human milk during the first month of lactation,Am. J. Clin. Nutr. 45, 921–926 (1987).

    PubMed  CAS  Google Scholar 

  25. D. Bouglé, F. Bureau, P. Foucault, J. F. Duhamel, G. Muller, and M. Drosdowsky, Molybdenum content of term and preterm human milk during the first 2 months of lactation,Am. J. Clin. Nutr. 48, 652–654 (1988).

    PubMed  Google Scholar 

  26. K. V. Rajagopalan, Molybdenum: an essential trace element in human nutrition,Ann. Rev. Nutr. 8, 401–427 (1988).

    Article  CAS  Google Scholar 

  27. H. S. Dang, D. D. Jaiswal, C. N. Wadhwani, S. Somasunderam, and H. Dacosta, Infants with a congenital anomaly and the concentration of Mo, As, Mn, Zn, and Cu in the mother’s milk,Sci. Total Environ. 27, 43–47 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. K. Ohtake, Changes in zinc and copper concentrations in breast milk and blood of Japanese women during lactation,J. Nutr. Sci. Vitam. 39, 189–200 (1993).

    CAS  Google Scholar 

  29. Joint WHO/IAEA Collaborative Study, Minor and Trace Elements in Breast Milk, WHO, Geneve, pp. 18–160 (1989).

    Google Scholar 

  30. Committee on Dietary Allowances and Food and Nutrition Board, Recommended Dietary Allowances, National Research Council, National Academy Press, Washington D.C., pp. 195–271 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aquilio, E., Spagnoli, R., Seri, S. et al. Trace element content in human milk during lactation of preterm newborns. Biol Trace Elem Res 51, 63–70 (1996). https://doi.org/10.1007/BF02790148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790148

Index Entries

Navigation