Skip to main content
Log in

Activities of liver microsomal fatty acid desaturases in zinc-deficient rats force-fed diets with a coconut oil/safflower oil mixture of linseed oil

  • Accelerated Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was conducted to investigate the effect of zinc deficiency on fatty acid desaturation in rats fed two different types of dietary fat, a mixture of coconut oil and safflower oil (7∶1, w/w, “coconut oil diet”) or linseed oil (“linseed oil diet”). In order to ensure an adequate food intake, all rats were force-fed by gastric tube. Zinc deficiency caused statistical significant reducion of Δ9-desaturase activity in liver microsomes of rats fed coconut oil diet and tendencial reduction (p<0.15) in rats fed linseed oil diet compared with control rats fed diets with the same type of fat. In agreement with this effect, zinc deficiency in the rats fed both types of dietary fat increased the ratio between total saturated and total monounsaturated fatty in liver phospholipids and liver microsomes. Zinc deficient rats on the coconut oil diet had unchanged Δ6-desaturase activity with linoleic acid as substrate and lowered activity with α-linolenic acid as substrate. In contrast, zinc deficient rats on the linseed oil diet had increased Δ6-desaturase activity with linoleic acid as substrate and unchanged activity with α-linolenic acid. Because linoleic acid is the main substrate for Δ6-desaturase in the rats fed coconut oil diet, and α-linolenic acid is the main substrate in the rats fed linseed oil diet, it is concluded that in vivo Δ6-desaturation was not changed by zinc deficiency in the rats fed both types of dietary fat. Activity of Δ5-desaturase was also not changed by zinc deficiency in the rats fed both dietary fats. Levels of fatty acids in liver phospholipids and microsomes derived by Δ4-, Δ5-, and Δ6-desaturation were not consistently changed by zinc deficiency in the rats fed both types of dietary fat. Thus, the enzyme studies and also fatty acid composition data of liver phospholipids and microsomes indicate that zinc deficiency does not considerably disturb desaturation of linoleic and α-linolenic acid. Therefore, it is suggested that similarities between deficiencies of zinc and essential fatty acids described in literature are not due to disturbed desaturation of linoleic acid in zinc deficiency. The present study also indicates that zinc deficiency enhances incorporation of eicosapentaenoic acid into phosphatidylcholine of rats fed diets with large amounts ofn-3 polyunsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Bettger, P. G. Reeves, E. A. Moscatelli, G. Reynolds, and B. L. O'Dell,J. Nutr. 109, 480 (1979).

    PubMed  CAS  Google Scholar 

  2. S. Ayala and R. R. Brenner,Acta Physiol. Latinoam,33, 191 (1983).

    Google Scholar 

  3. P. Chanmugan, C. Wheeler, and D. H. Hwang,J. Nutr.,114, 2073 (1984).

    Google Scholar 

  4. S. Clejan, M. Castro-Magana, P. J. Collipp, E. Jonas, and V. T. Maddaiah,Lipids 17, 129 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. S. C. Cunnane, D. F. Horrobin, and M. S. Manku,Proc. Soc. Exp. Biol. Med. 177, 441 (1984).

    PubMed  CAS  Google Scholar 

  6. S. C. Cunnane,Br. J. Nutr. 59, 273 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. A. C. Fogerty, G. L. Ford, I. E. Dreosti, and I. J. Tinsley,Nutr. Rep. Int.,32, 1009 (1985).

    CAS  Google Scholar 

  8. H. P. Roth and M. Kirchgessner,J. Anim. Physiol. Anim. Nutr.,70, 236 (1993).

    CAS  Google Scholar 

  9. T. R. Kramer, M. Briske-Anderson, S. B. Johnson, and R. T. Holman,J. Nutr. 114, 1224 (1984).

    PubMed  CAS  Google Scholar 

  10. K. Eder and M. Kirchgessner,Z. Ernährungswiss.32, 187 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. S. Clejan, M. Castro-Magnana, and P. J. Collipp,Lipids 16, 454 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. S. L. Tsai, M. C. Craig-Schmidt, J. D. Weete, and R. E. Keith,Fed. Am. Soc. Exp. Biol. 42, 823 (1983).

    Google Scholar 

  13. R. T. Holman, S. B. Johnson, O. Mercuri, H. J. Itarte, M. A. Rodrigo, and M. E. De Tomas,Am. J. Clin. Nutr. 34, 1534 (1981).

    PubMed  CAS  Google Scholar 

  14. M. E. De Tomas, O. Mercuri, and A. Rodrigo,J. Nutr. 110, 595 (1980).

    PubMed  Google Scholar 

  15. E. G. Hill and R. T. Holman,J. Nutr. 110, 1057 (1980).

    PubMed  CAS  Google Scholar 

  16. T. Gerson,J. Nutr. 104, 701–709 (1974).

    PubMed  CAS  Google Scholar 

  17. K. Eder and M. Kirchgessner,J. Nutr. 124, 1917 (1994).

    PubMed  CAS  Google Scholar 

  18. A. Schülein, M. Kirchgessner, and H. P. Roth,J. Anim. Physiol. Anim. Nutr. 67, 157 (1992).

    Article  Google Scholar 

  19. Y. H. Y. Park, C. J. Grandjean, D. L. Antonson, and J. A. Vanderhoof,J. Nutr. 116, 610 (1986).

    PubMed  CAS  Google Scholar 

  20. P. R. Flanagan,J. Nutr. 114, 493 (1984).

    PubMed  CAS  Google Scholar 

  21. T. R. Kramer, M. Briske-Anderson, S. B. Johnson, and R. T. Holman,Nutr. Res. 6, 1063 (1986).

    Article  CAS  Google Scholar 

  22. K. Eder and M. Kirchgessner,Lipids 29, 839 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. E. N. Christiansen, J. S. Lund, T. Rortveit, and A. C. Rustan,Biochim. Biophys. Acta 1082, 57–62 (1991).

    PubMed  CAS  Google Scholar 

  24. M. L. Garg, E. Sebokova, A. B. R. Thomson, and T. M. Clandinin,Biochem. J. 249, 351 (1988).

    PubMed  CAS  Google Scholar 

  25. R. R. Brenner, Factors influencing fatty acid chain elongation and desaturation, inThe Role of Fats in Human Nutrition, A. J. Vergroesen and M. Crawford, eds., Academic, London, pp. 45–79 (1989).

    Google Scholar 

  26. S. M. Actis Dato, A. Catala, and R. R. Brenner,Lipids 8, 1 (1973).

    Article  PubMed  CAS  Google Scholar 

  27. K. Smith, R. J. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, M. Goeke, B. J. Olson, and D. C. Klenk,Anal. Biochem. 150, 76 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. W. R. Morrison and L. M. Smith,J. Lipid Res. 5, 600 (1964).

    PubMed  CAS  Google Scholar 

  29. M. Narce, J. Gresti, and J. Bezard,J. Chromatogr. 448, 249 (1988).

    Article  PubMed  CAS  Google Scholar 

  30. A. Hara and N. S. Radin,Anal. Biochem. 90, 420 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. K. Eder, A. M. Reichlmayr-Lais, and M. Kirchgessner,J. Chromatogr. 598, 33 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. K. Eder, A. M. Reichlmayr-Lais, and M. Kirchgessner,J. Chromatogr. 588, 265 (1991).

    Article  CAS  Google Scholar 

  33. R. R. Brenner and R. O. Peluffo,J. Biol. Chem. 241, 5213 (1966).

    PubMed  CAS  Google Scholar 

  34. N. Nudo, Y. Nakagawa, and K. Waku,Biol. Trace Elem. Res.,24, 49 (1990).

    Article  Google Scholar 

  35. R. Christon, Y. Fernandez, C. Cambon-Gros, A. Periquet, P. Deltour, C. L. Leger, and S. Mitjavila,J. Nutr.,118, 1311 (1988).

    PubMed  CAS  Google Scholar 

  36. K. M. Hargreaves, D. J. Pehowich, and M. T. Clandinin,J. Nutr.,119, 344 (1989).

    PubMed  CAS  Google Scholar 

  37. W. E. Cornatzer, J. A. Haning, J. C. Wallwork, and H. H. Sandstead,Biol. Trace Elem. Res. 6, 393 (1984).

    Article  CAS  Google Scholar 

  38. W. J. Bettger and B. L. O'Dell,Life Sci.,28, 1425 (1981).

    Article  PubMed  CAS  Google Scholar 

  39. C. D. Stubbs and A. D. Smith,Biochim. Biophys. Acta,779, 89 (1984).

    PubMed  CAS  Google Scholar 

  40. J. F. Mead,J. Lipid Res.,25, 1517 (1984).

    PubMed  CAS  Google Scholar 

  41. B. L. O'Dell, J. D. Browning, and P. G. Reeves,J. Nutr.,117, 1883 (1987).

    PubMed  Google Scholar 

  42. P. Chanmugan, C. Wheeler, and D. H. Hwang,J. Nutr. 114, 2066 (1984).

    Google Scholar 

  43. D. H. Hwang, P. Chanmugan, and C. Wheeler,J. Nutr.,114, 398 (1984).

    PubMed  CAS  Google Scholar 

  44. M. K. Song and N. F. Adham,Am. J. Clin. Nutr. 41, 1201 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eder, K., Kirchgessner, M. Activities of liver microsomal fatty acid desaturases in zinc-deficient rats force-fed diets with a coconut oil/safflower oil mixture of linseed oil. Biol Trace Elem Res 48, 215–229 (1995). https://doi.org/10.1007/BF02789404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789404

Index Entries

Navigation