Skip to main content
Log in

The analysis of fluorophore-labeled carbohydrates by polyacrylamide gel electrophoresis

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The glycans of glycoconjugates mediate numerous important biological processes. Their separation and structural determination present considerable difficulties because of the small quantities that are available from biological sources and the inherent difficulty of analyzing the wide variety of complex structures that exist. A method for the analysis of reducing saccharides by PAGE that uses specific fluorophore labeling and is simple, rapid, sensitive, and readily available to biological researchers, has been developed. The method is known acronimically either as PAGEFS (PAGE of Fluorophore-labeled Saccharides) or in one commercial format as FACE (Fluorophore-Assisted Carbohydrate Electrophoresis). In the PAGEFS method, saccharides having an aldehydic reducing end group are labeled quantitatively with a fluorophore and then separated with high resolution by PAGE. Two fluorophores, 8-aminonaphthalene-l,3,6-trisulfonic acid (ANTS) and 2-aminoacridone (AMAC), have been used to enable the separation of a variety of saccharide positional isomers, anomers, and epimers. Subpicomolar quantities of individual saccharides can be detected using a sensitive imaging system. Mixtures of oligosaccharides obtained by enzymatic cleavage from glycoproteins can be labeled and electrophoresed to yield an oligosaccharide profile of each protein. AMAC can be used to distinguish unequivocally between acidic and neutral oligosaccharides. Methods for obtaining saccharide sequence information from purified oligosaccharides have been developed using enzymatic degradation. Other applications and the potential of the system are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMAC:

2-aminoacridone

ANTS:

8-aminonaphthalene-l,3,6-trisulfonic acid

CCD:

charge-coupled-device

FACE:

fluorophore-assisted carbohydrate electrophoresis

GAG:

glycosaminoglycan

GEMI:

glycan electrophoretic mobility index

GLC:

gas-liquid chromatography

HPAEC:

high-performance anion exchange chromatography

HPLC:

high-performance liquid chromatography

ms:

massspectrometry

nmr:

nuclear magnetic resonance

OSP:

oligosaccharide profile

PAGE:

polyacrylamide gelelectrophoresis

PAGEFS:

polyacrylamide gel electrophoresis of fluorophore-labeled saccharides

SFD:

saccharide fluorophore derivative

TLC:

thin layer chromatography

uv:

ultraviolet

References

  1. Rademacher, T. W., Parekh, R. B., and Dwek, R. A. (1988)Glycobiology Ann. Rev. Biochem. 57, 755–838.

    Google Scholar 

  2. Rasmussen, J. R. (1992) Effect of glycosylation on protein function.Curr. Opin. Struct. Biol. 2, 682–686.

    CAS  Google Scholar 

  3. Knight, P. (1989) The carbohydrate frontier.Bio/ Technology 7, 35–40.

    CAS  Google Scholar 

  4. Drickamer, K. and Carver, J. (1992) Upwardly mobile sugars gain status as information bearing molecules.Curr. Opin Struct. Biol. 2, 653,654.

    Google Scholar 

  5. Cummings, D. A. (1991) Glycosylation of recombinant protein therapeutics: control and functional implications.Glycobiology 1, 115–130.

    Google Scholar 

  6. Rademacher, T. W. (1992) Therapeutic challenges: does glycobiology have a role?Trends Biotechnol. 10, 227–230.

    PubMed  CAS  Google Scholar 

  7. Wieland, F. (1982) Are sulfated cell surface glycoproteins, involved in the control of cell differentiation?Trends Biochem. Sci. 7, 308,309.

    CAS  Google Scholar 

  8. Sharon, N. and Lis, H. (1989)Lectins, Chapman and Hall, London.

    Google Scholar 

  9. Feizi, T. (1991) Carbohydrate differentiation antigens; probable ligands for cell adhesion molecules.Trends Biochem. Sci. 16, 84–86.

    PubMed  CAS  Google Scholar 

  10. Brandley, B. K. and Schnaar, R. L. (1986) Cell surface carbohydrates in cell recognition and response.J. Leukocyte Biol. 40, 97–111.

    PubMed  CAS  Google Scholar 

  11. Lasky, L. A. (1992) Selectins: interpreters of cell specific carbohydrate information during inflammation.Science 258, 964–969.

    PubMed  CAS  Google Scholar 

  12. Karlsson, K.-A. (1989) Glycobiology: a growing field for drug design.Trends Pharmacol. Sci. 12, 265–272.

    Google Scholar 

  13. Paulson, J. C. (1989) Glycoproteins: What are the sugar chains for?Trends Biochem. Sci. 14, 272–276.

    PubMed  CAS  Google Scholar 

  14. Hart, G. W., Haltiwanger, R. S., Holt, G. D., and Kelly, W. G. (1989) Glycosylation in the nucleus and cytoplasm.Ann. Rev. Biochem. 58, 841–874.

    PubMed  CAS  Google Scholar 

  15. Jentoft, N. (1990) Why are proteins O-glycosylated?Trends Biochem. Sci. 15, 291–294.

    PubMed  CAS  Google Scholar 

  16. Singhal, A. and Hakarmori, S.-I. (1990) Molecular changes in carbohydrate antigens associated with cancer.Bio-Essays 12, 223–230.

    CAS  Google Scholar 

  17. Elbein, A. D. (1991) The role of N-linked oligosaccharides in glycoprotein function.Trends Biotechnol. 9, 346–352.

    PubMed  Google Scholar 

  18. Feizi, T. and Larkin, M. (1990) AIDS and glycosylation.Glycobiology 1, 17–23.

    PubMed  CAS  Google Scholar 

  19. Fukuda, M. (1991) Leukosialin, a major O-glycan containing sialoglycoprotein defining leukocyte differentiation.Glycobiology 1, 347–356.

    PubMed  CAS  Google Scholar 

  20. Geisow, M. J. (1991) Characterizing recombinant proteins.Trends Biotechnol. 9, 921–925.

    CAS  Google Scholar 

  21. Goochee, C. E., Gramer, M. J., Andersen, D. C., Bahr, J. R., and Rasmussen, J. R. (1991) The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties.Bio/Technology 9, 1347–1355.

    PubMed  CAS  Google Scholar 

  22. Magnani, J. L. (1991) The tumor markers, sialyl Le(a) and sialyl Le(x) bind ELAM-1.Glycobiology 1, 318–320.

    PubMed  CAS  Google Scholar 

  23. Springer, T. A. and Lasky, L. A. (1991) Sticky sugars for selecting.Nature 349, 196,197.

    PubMed  CAS  Google Scholar 

  24. Swiedler, S. J. (1991) Reverse glycobiology: the LEC-CAMs and their carbohydrate ligands.Glycobiology 1, 237,238.

    PubMed  CAS  Google Scholar 

  25. Wang, J. L., Laing, J. G., and Anderson, R. L. (1991) Lectins in the cell nucleus.Glycobiology 1, 243–252.

    PubMed  CAS  Google Scholar 

  26. Devine, P. L. and McKenzie, I. F. C. (1992) Mucins: structure, function and associations with malignancy.BioEssays 14, 619–625.

    PubMed  CAS  Google Scholar 

  27. Miyake, M., Tashihiko, T., Hitomi, S., and Hakamori, S.-I. (1992) Correlation of expression of H/Ley/Leb antigens with survival in patients with carcinoma of the lung.N. Engl. J. Med. 327, 14–18.

    PubMed  CAS  Google Scholar 

  28. Stanley, P.(1992) Glycosylation engineering.Glycobiology 2, 99–107.

    PubMed  CAS  Google Scholar 

  29. Muramatsu, T. (1993) Carbohydrate signals in metastasis and prognosis of human carcinomas.Glycobiology 3, 294–296.

    Google Scholar 

  30. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct.Glycobiology 2, 97–130.

    Google Scholar 

  31. Kobata, A. (1992) Structures and functions of the sugar chains of glycoproteins.Eur. J. Biochem. 209, 483–501.

    PubMed  CAS  Google Scholar 

  32. Dabelsteen, E. and Clausen, H. (eds.) (1992)Carbohydrate Pathology, APMIS Supplement no. 27, 100 Munksgaard, Copenhagen, Denmark.

    Google Scholar 

  33. Darvill, A., Augur, C., Bergmann, C., Carlson, R. W., Cheong, J. J., Eberhard, S., Hahn, M. G., Lo, V. M., Marfa, V., Meyer, B., Mohnen, D., O’Neill, M. A., Spiro, M. D., van Halbeek, H., York, W. S., and Albersheim, P. (1992) Oligosaccharins—oligosaccharides that regulate growth, development and defense responses in plants.Glycobiology 2, 181–198.

    PubMed  CAS  Google Scholar 

  34. Ryan, C. A. and Farmer, E. E. (1991) Oligosaccharide signals in plants: a current assessment.Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 651–674.

    CAS  Google Scholar 

  35. Winkelhake, J. L. (1991) Will complex carbohydrate ligands of vascular selectins be the next generation of non-steroidal anti-inflammatory drugs.Glycoconjugate J. 8, 381–386.

    CAS  Google Scholar 

  36. Allen, H. J. and Kiselius, E. C. (eds.) (1992)Glycoconjugates: Composition, Structure and Function, Marcel Dekker, New York.

    Google Scholar 

  37. Ginsburg, V. and Robbins, P. (1981)Biology of the Carbohydrates, vol. 1, Wiley, New York.

    Google Scholar 

  38. Gottschalk, A. (1972)Glycoproteins: Their Composition, Structure and Function, Elsevier, New York.

    Google Scholar 

  39. Hughes, R. C. (1983)Glycoproteins, Chapman and Hall, London.

    Google Scholar 

  40. Kennedy, J. F. (1988)Carbohydrate Chemistry, Clarendon, Oxford.

    Google Scholar 

  41. Keesey, J. (1987)Biochemica Information, Boehringer Mannheim Biochemicals, Indianapolis, IN.

    Google Scholar 

  42. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides.Ann. Rev. Biochem. 54, 631–664.

    PubMed  CAS  Google Scholar 

  43. Patel, R. B. (1991) Mammalian cell gene expression: protein glycosylation.Curr. Opin. Biotechnol. 2, 730–734.

    Google Scholar 

  44. Martinez, J. S. and Barsigian, C. (1987) Biology of disease: carbohydrate abnormalities of N-linked plasma glycoproteins in liver disease.Lab. Invest. 57, 240–257.

    PubMed  CAS  Google Scholar 

  45. Fukuda, M. N. (1990) HEMPAS disease: genetic defect of glycosylation.Glycobiology 1, 9–15.

    PubMed  CAS  Google Scholar 

  46. Kobata, A. (1991) Functions and pathology of the sugar chains of immunoglobulin G.Glycobiology 1, 5–8.

    Google Scholar 

  47. Mackiewcz, A., Dewey, M. J., Berger, F. G., and Baumann, H. (1991) Acute phase mediated changes in glycosylation of rat α1-acid glycoprotein in transgenic mice.Glycobiology 1, 265–269.

    Google Scholar 

  48. Stibler, H. (1991) Carbohydrate-deficient transferrin in serum: a new marker of potentially harmful alcohol consumption reviewed.Clin. Chem. 37, 2029–2037.

    PubMed  CAS  Google Scholar 

  49. Barton, N. W., Brady, R. O., Dambrosia, J. M., Di Bisceglie, A. M., Doppelt, S. H., Hill, S. C., Mankin, H. J., Murray, G. J., Parker, R. I., Argoff, C. E., Grewal, R. P., Yu, K.-T., et al. (1991) Replacement therapy for inherited enzyme deficiency—macrophage targeted glucocerebrosidase for Gaucher’s disease.N. Engl. J. Med. 324, 1464–1470.

    PubMed  CAS  Google Scholar 

  50. Sasaki, H., Bothner, B., Dell, A., and Fukuda, M. (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA.J. Biol. Chem. 262, 12,059–12,076.

    CAS  Google Scholar 

  51. Dube, S., Fisher, J. W., and Powell, J. S. (1988) Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion and biological functions.J. Biol. Chem. 263, 17,516–17,521.

    CAS  Google Scholar 

  52. Fukuda, M. N., Sasaki, H., Lopez, L., and Fukuda, M. (1989) Survival of recombinant erythropoietin in the circulation: the role of carbohydrates.Blood 73, 84–89.

    PubMed  CAS  Google Scholar 

  53. Tsuda, E., Kawanishi, G., Ueda, M., Masuda, S., and Sasaki, R. (1990) The role of carbohydrates in recombinant human erythropoietin.Eur. J. Biochem. 188, 405–411.

    PubMed  CAS  Google Scholar 

  54. Takeuchi, M. and Kobata, A. (1991) Structures and functional roles of the sugar chains of human erythropoietins.Glycobiology 1, 337–346.

    PubMed  CAS  Google Scholar 

  55. Pennica, D., Holmes, W. E., Kohr, W. J., Harkins, R. N., Vehar, G. A., Ward, C. A., Bennett, W. F., Yelverton, E., Seeburg, P. H., Heyneker, H. L., Goeddel, D. V., and Collen, D. (1983) Cloning and expression of human tissue-type plasminogen activator cDNA inE. coli.Nature 301, 214–221.

    PubMed  CAS  Google Scholar 

  56. Spellman, M. W., Basa, L. J., Leonard, C. K., Chakel, J. A., O’Connor, J. V., Wilson, S., and Van Halbeek, H. (1989) Carbohydrate structure of human tissue plasminogen activator expressed in Chinese hamster ovary cells.J. Biol. Chem. 264, 14,100–14,111.

    CAS  Google Scholar 

  57. Wilhelm, J., Lee, S. G., Kalyan, N. K., Cheng, S. M., Wiener, F., Pierzchala, W., and Hung, P. P. (1990) Alterations in the domain structure of tissue-type plasminogen activator change the nature of asparagine glycosylation.Bio/Technology 8, 321–325.

    PubMed  CAS  Google Scholar 

  58. Howard, S. C., Wittwer, A. J., and Welply, J. K. (1991) Oligosaccharides at each glycosylation site make structure-dependent contributions to biological properties of human tissue plasminogen activatorGlycobiology 1, 411–417.

    PubMed  CAS  Google Scholar 

  59. Patel, T. P., Parekh, R. B., Moellering, B. J., and Prior, C. P. (1992) Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody.Biochem. J. 285, 839–845.

    PubMed  CAS  Google Scholar 

  60. Parekh, R. B., Dwek, R. A., Edge, C. J., and Rademacher, T. W. (1989) N-glycosylation and the product of recombinant glycoproteins.Trends Biotechnol. 7, 117–122.

    CAS  Google Scholar 

  61. Welply, J. K. (1989) Sequencing methods for carbohydrates and their biological applications.Trends Biotechnol. 7, 5–10.

    CAS  Google Scholar 

  62. Spellman, M. W. (1990) Carbohydrate characterization of glycoproteins of pharmaceutical interest.Anal. Chem. 62, 1714–1723.

    PubMed  CAS  Google Scholar 

  63. Vapnek, D. (1990) A biotechnology view of glycobiology.Glycobiology 1, 3,4.

    PubMed  CAS  Google Scholar 

  64. Parekh, R. (1991) Automation of glycosylation analysis: a way forward for recombinant therapeutics.Glycoconjugate J. 8, 63–65.

    CAS  Google Scholar 

  65. Seamon, K. (1991) Evaluation of recombinant glycoproteins.Glycoconjugate J. 8, 3–5.

    CAS  Google Scholar 

  66. Liu, D. T.-Y. (1992) Glycoprotein Pharmaceuticals: scientific and regulatory considerations and the US Orphan Drug Act.Trends Biotechnol. 10, 114–120.

    PubMed  CAS  Google Scholar 

  67. Van Kuik, J. A. and Vliegenthart, J. F.G. (1992) Databases of complex carbohydrates.Trends Biotechnol. 10, 182–185.

    PubMed  Google Scholar 

  68. Doubet, S., Bock, K., Smith, D., Darvill, A., and Albersheim, P. (1989) The complex carbohydrate structure database.Trends Biochem. Sci. 14, 475–477.

    PubMed  CAS  Google Scholar 

  69. Varki, A. (1992) Diversity in the sialic acids.Glycobiology 2, 25–40.

    PubMed  CAS  Google Scholar 

  70. McNeil, M., Darvill, A. G., Aman, P., Franzen, L.-E., and Albersheim, P. (1982) Structural analysis of complex carbohydrates using high-performance liquid chromatography, gas chromatography, and mass spectrometry.Methods Enzymol. 83, 3–45.

    PubMed  CAS  Google Scholar 

  71. Kobata, A. (1984) The carbohydrates of glycoproteins, inBiology of Carbohydrates, vol. 2 (Ginsburg, V. and Robbins, P. W., eds.), Wiley, New York, pp. 87–161.

    Google Scholar 

  72. Chaplin, M. F. and Kennedy, J. F. (1986)Carbohydrate Analysis: A Practical Approach, IRL, Oxford.

    Google Scholar 

  73. Cummings, R. D., Merkle, R. K., and Stults, N. L. (1989) Separation and analysis of glycoprotein oligosaccharides.Methods Cell Biol. 32, 141–183.

    PubMed  CAS  Google Scholar 

  74. Varki, A. (1991) Radioactive tracer techniques in the sequencing of glycoprotein oligosaccharides.FASEB J. 5, 226–235.

    PubMed  CAS  Google Scholar 

  75. Barker, R., Nunez, H. A., Rosevear, P., and Serianni, A. S. (1982)13C NMR analysis of complex carbohydrates.Methods Enzymol. 83, 58–69.

    PubMed  CAS  Google Scholar 

  76. Vliegenthart, J. F. G., Dorland, L., and Van Halbeeck, H. (1983) High-resolution proton nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins.Adv. Carbohydr. Chem. Biochem. 41, 209–374.

    CAS  Google Scholar 

  77. Dell, A., Khoo, K.-H., Panico, M., McDowell, R. A., Etienne, A. T., Reason, A. J., and Morris, H. R. (1987) FAB-MS and ES-MS of glycoproteins, inGlycobiology: A Practical Approach (Fukuda, M. and Kobata, A., eds.), IRL, Oxford, pp. 187–222.

    Google Scholar 

  78. Thomas-Oates, T. E. and Dell, A. (1989) Fast atom bombardment-mass spectrometry strategies for analysing glycoprotein glycans.Biochem. Soc. Trans. 17, 243–248.

    PubMed  CAS  Google Scholar 

  79. Laine, R.A. (1990) Glycoconjugates: overview and strategy.Methods Enzymol. 193, 539–553.

    PubMed  CAS  Google Scholar 

  80. Geisow, M. J. (1992) Mass measurement at high molecular weight—new tools for biotechnologists.Trends Biotechnol. 10, 276–280.

    Google Scholar 

  81. Harvey, D. J. (1992) The role of mass spectrometry in glycobiology.Glycoconjugate J. 9, 1–12.

    CAS  Google Scholar 

  82. Wang, W. T., LeDonne, N. C., Jr., Ackerman, B., Sweeley, C. C. (1984) Structural characterization of oligosaccharides by high-performance liquid chromatography, fast atom bombardment-mass spectrometry, and exoglycosidase digestion.Anal. Biochem. 141, 366–381.

    PubMed  CAS  Google Scholar 

  83. Parekh, R. B. and Patel, T. P. (1992) Comparing the glycosylation patterns of recombinant glycoproteins.Trends Biotechnol. 10, 276–280.

    PubMed  CAS  Google Scholar 

  84. Morrison, I. M. (1986) Glycolipids, inCarbohydrate Analysis: A Practical Approach (Chaplin, M. F. and Kennedy, J. F., eds.), IRL, Oxford, pp. 205–221.

    Google Scholar 

  85. Amano, J. and Kobata, A. (1989) Quantitative conversion of mucin-type sugar chains to radioactive oligosaccharides.Methods Enzymol. 179, 261–270.

    PubMed  CAS  Google Scholar 

  86. Patel, T., Bruce, J., Merry, A., Bigge, C., Wormald, M., Jaques, A., and Parekh, R. (1993) Use of hydrazine to release in intact and unreduced form both N-and O-linked oligosaccharides from glycoproteins.Biochemistry 32, 679–693.

    PubMed  CAS  Google Scholar 

  87. Kobata, A. (1979) Use of endo and exoglycosidases for structural studies of glycoconjugates.Anal. Biochem. 100, 1–14.

    PubMed  CAS  Google Scholar 

  88. Alexander, S. and Elder, J. M. (1989) Endoglycosidases fromFlavobacterium meningosepticum; application to biological problems.Methods Enzymol. 179, 505–518.

    PubMed  CAS  Google Scholar 

  89. Maley, F., Trimble, R. B., Tarentino, A. L., and Plummer, T. H., Jr. (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidase.Anal. Biochem. 180, 195–204.

    PubMed  CAS  Google Scholar 

  90. Tarentino, A. L., Trimble, R. B., and Plummer, T. H., Jr. (1989) Enzymatic approaches for studying the structure, synthesis and processing of glycoproteins.Methods Cell Biol. 32, 111–139.

    PubMed  CAS  Google Scholar 

  91. Takahashi, N. and Muramatsu, T. (eds.) (1992)CRC Handbook of Endoglycosidases and Glucoamidases, CRC Press, Boca Raton, FL.

    Google Scholar 

  92. Umemoto, J., Bhavansmdan, V. P., and Davidson, E. A. (1977) Purification and properties of an endoα-N-acetyl-d-galactosaminidase fromDiplococcus pneumoniae.J. Biol. Chem. 252, 8609–8614.

    PubMed  CAS  Google Scholar 

  93. Li, S.-C., DeGasperi, R., Muldrey, J. E., and Li, Y.-T. (1986) A unique glycosphingolipid-splitting enzyme (ceramide-glycanase from leech) cleaves the linkage between the oligosaccharide and the ceramide.Biochem. Biophys. Res. Commum. 141, 346–352.

    CAS  Google Scholar 

  94. Higashi, H., HirabayashLi, Y., Ito, M., Yamagata, T., Matsumoto, M., Ueda, S., and Kato, S. (1987) Immunostaining on thin-layer chromatograms of oligosaccharides released from gangliosides by endoglycoceramidase.J. Biochem. 102, 291–296.

    PubMed  CAS  Google Scholar 

  95. Li, Y.-T., Ishikawa, Y., and Li, S.-C. (1987) Occurrence of ceramide-glycanase in the earthwormLumbricus terrestris.Biochem. Biophys. Res. Commum. 149, 167–172.

    CAS  Google Scholar 

  96. Yamashita, K., Mizuochi, T., and Kobata, A. (1982) Analysis of oligosaccharides by gel filtration.Methods Enzymol. 83, 105–126.

    PubMed  CAS  Google Scholar 

  97. Honda, S. (1984) High-performance liquid chromatography of mono and oligosaccharides.Anal. Biochem. 140, 1–47.

    PubMed  CAS  Google Scholar 

  98. White, C. A. and Kennedy, J. F. (1986) Oligosaccharides, inCarbohydrate Analysis: A Practical Approach (Chaplin, M. F. and Kennedy, J. F., eds.), IRL, Oxford, pp. 37–54.

    Google Scholar 

  99. Hicks, KB. (1988) High performance liquid chromatography of carbohydrates.Adv. Carb. Chem. Biochem. 46, 17–72.

    CAS  Google Scholar 

  100. Churms, S. C. (1990) Recent developments in the Chromatographic analysis of carbohydrates.J. Chromatogr. 500, 555–583.

    CAS  Google Scholar 

  101. Hall, N. A. and Patrick, A. D. (1989) A high-performance liquid chromatography method for the analysis of picomole amounts of oligosaccharides.Anal. Biochem. 178, 378–384.

    PubMed  CAS  Google Scholar 

  102. Oku, H., Hase, S., and Ikenaka, T. (1990) Separation of the oligomannose-type sugar chains having one to five mannose residues by high-performance liquid chromatography as their pyridylamino derivatives.Anal. Biochem. 185, 331–334.

    PubMed  CAS  Google Scholar 

  103. Kuraya, N. and Hase, S. (1992) Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions.J. Biochem. 112, 122–126.

    PubMed  CAS  Google Scholar 

  104. Hardy, M. R. and Townsend, R. P. (1988) Separation of positional isomers of oligosaccharides and glycopeptides by high performance anion exchange chromatography with pulsed amperometric detection.Proc. Natl. Acad. Sci. USA 85, 3289–3293.

    PubMed  CAS  Google Scholar 

  105. Townsend, R. R. and Hardy, M. R. (1991) Analysis of glycoprotein oligosaccharides using high-pH anion exchange chromatography.Glycobiology 1, 139–147.

    PubMed  CAS  Google Scholar 

  106. Honda, S., Susuki, S., Zaiki, S., and Kakehi, K. (1990) Analysis of N and O-glycosidically bound sialo-oligosaccharides in glycoproteins by high performance liquid chromatography with pulsed amperometric detection.J. Chromatogr. 523, 189–200.

    PubMed  CAS  Google Scholar 

  107. Barr, J. R., Anumula, K. R., Vettesse, M. B., Taylor, P. B., and Carr, S. A. (1991) Structural classification of carbohydrates in glycoproteins by mass spectrometry and high-performance anion-exchange chromatography.Anal. Biochem. 192, 181–192.

    PubMed  CAS  Google Scholar 

  108. Tai, T., Yamashita, K., Ito, S., and Kobata, A. (1977) Structures of the carbohydrate moiety of ovalbumin glycopeptide III and the difference in specificity of endo-β-acetylglucosaminidases CII and H.J. Biol. Chem. 252, 6687–6694.

    PubMed  CAS  Google Scholar 

  109. Chaplin, M. F. (1986) Monosaccharides, inCarbohydrate Analysis: A Practical Approach (Chaplin, M.F. and Kennedy, J. F., eds.), IRL, Oxford, pp. 1–36.

    Google Scholar 

  110. Pazur, J. H. and Marchetti, N. T. (1992) Action patterns of amylotic enzymes as determined by the [l-14C]malto-oligosaccharide mapping method.Carbohydrate Res. 227, 215–225.

    CAS  Google Scholar 

  111. Prakash, C. and Vijay, I. A. (1983) A new fluorescent tag for labeling saccharides.Anal. Biochem. 128, 41–46.

    PubMed  CAS  Google Scholar 

  112. Towbin, H., Schoenenberger, C. A., Braun, D. G., and Rosenfelder, G. (1988) Chromogenic labeling of milk oligosaccharides: purification by affinity chromatography and structure determination.Anal. Biochem. 173, 1–9.

    PubMed  CAS  Google Scholar 

  113. Weigel, H. (1963) Paper electrophoresis of carbohydrates.Adv. Carb. Chem. Biochem. 18, 61–97.

    CAS  Google Scholar 

  114. Wenn, R. V. (1975) The electrophoretic mobilities of 5-dimethylaminonaphthalene-1 -sulphony 1-glycopeptides and their relation to molecular weight.Biochem. J. 145, 281–285.

    PubMed  CAS  Google Scholar 

  115. Hase, S., Ikenaka, T., and Matsushama, Y. (1978) Analyses of oligosaccharides by tagging the reducing end with a fluorescent compound.J. Biochem. 85, 989–994.

    Google Scholar 

  116. Hampson, I. N. and Gallagher, J. T. (1984) Separation of radiolabelled glycosaminoglycan oligosaccharides by polyacrylamide-gel electrophoresis.Biochem. J. 221, 697–705.

    PubMed  CAS  Google Scholar 

  117. Turnbull, T. E. and Gallagher, J. T. (1988) Oligosaccharide mapping of heparin sulphate by polyacrylamidegradient-gel electrophoresis and electrotransfer to nylon membrane.Biochem. J. 251, 597–608.

    PubMed  CAS  Google Scholar 

  118. Misevic, G. N. (1989) Immunoblotting and immunobinding of acidic polysaccharides separated by gel electrophoresis.Methods Enzymol. 179, 95–104.

    PubMed  CAS  Google Scholar 

  119. Stoeker, G., Lueckge, J., Geiling, H., and Wagener, C. (1989) Characterization of biotin-labeled proteoglycans by electrophoretic separation on minigels and blotting onto nylon membranes prior and after enzymatic digestion.Anal. Biochem. 179, 245–250.

    Google Scholar 

  120. Pelkonen, S. and Finne, J. (1989) Polyacrylamide gel electrophoresis of capsular polysaccharides of bacteria.Methods Enzymol. 179, 104–110.

    PubMed  CAS  Google Scholar 

  121. Poretz, R. D. and Pieczenik, G. (1981) Structural analysis of glycopeptides by polyacrylamide gel electrophoresis.Anal. Biochem. 115, 170–176.

    PubMed  CAS  Google Scholar 

  122. Weitzman, S., Scott, V., and Keegstra, K. (1989) Analysis of glycopeptides as borate complexes by polyacrylamide gel electrophoresis.Methods Enzymol. 179, 104–110.

    Google Scholar 

  123. Das, O. P. and Henderson, E. J. (1986) Fluorographic detection of tritiated glycopeptides and oligosaccharides separated on polyacrylamide gels: analysis of glycans fromDictyostelium discoidum glycoproteins.Anal. Biochem. 158, 390–398.

    PubMed  CAS  Google Scholar 

  124. Jann, B., Reske, K., and Jam, K. (1975) Heterogeneity of lipopolysaccharides. Analysis of polysaccharide chain lengths by sodium dodecylsulfate-polyacrylamide gel electrophoresis.Eur. J. Biochem. 60, 239–246.

    PubMed  CAS  Google Scholar 

  125. Al-Hakim, A. and Linhardt, R. J. (1991) Capillary electrophoresis for the analysis of chondroitin sulfatedermatan sulfate-derived disaccharides.Anal. Biochem. 195, 68–73.

    PubMed  CAS  Google Scholar 

  126. Ampofo, S. A., Wang, H. M., and Linhardt, R. J., (1991) Disaccharide compositional analysis of heparin and heparin sulfate using capillary zone electrophoresis.Anal. Biochem. 199, 249–255.

    PubMed  CAS  Google Scholar 

  127. Carney, S. L. and Osborne, D. J. (1991) The separation of chondroitin sulfate disaccharides and hyaluronan oligosaccharides by capillary zone electrophoresis.Anal. Biochem. 195, 132–140.

    PubMed  CAS  Google Scholar 

  128. Hoffstetter-Kuhn, S., Paulus, A., Gassmann, E., and Widmar, H. M. (1991) Influence of borate complexation on the electrophoretic behaviour of carbohydrates in capillary electrophoresis.Anal. Chem. 63, 1541–1547.

    CAS  Google Scholar 

  129. Hermentin, P., Witzel, R., Doenges, R., Bauer, R., Haupt, H., Patel, T., Parekh, R. B., and Brazel, D. (1992) The mapping by high-pH anion exchange chromatography with pulsed amperometric detection and capillary electrophoresis of the carbohydrate moieties of human plasma αl-acid glycoprotein.Anal. Biochem. 206, 419–429.

    PubMed  CAS  Google Scholar 

  130. Honda, S., Makino, A., Suzuki, S., and Kakehi, K. (1990) Analysis of the oligosaccharides in ovalbumin by high performance capillary electrophoresis.Anal. Biochem. 191, 228–234.

    PubMed  CAS  Google Scholar 

  131. Honda, S., Iwase, S., Makino, A., and Fujiwara, S. (1989) Simultaneous determination of reducing monosaccharides, by capillary zone electrophoresis as the borate complexes of their 3-methyl-l-phenyl-2-pyrazolin-5-one derivatives.Anal. Biochem. 176, 72–77.

    PubMed  CAS  Google Scholar 

  132. Honda, S., Yamamoto, K., Suzuki, S., Ueda, M., and Kakehi, K. (1990) High-performance capillary zone electrophoresis of carbohydrates in the presence of alkaline earth metal ions.J. Chromatogr. 588, 327–333.

    Google Scholar 

  133. Liu, J., Shirota, O., Wiesler, O., and Novotny, M. (1991) Ultrasensitive fluorometric detection of carbohydrates as derivatives in mixtures separated by capillary electrophoresis.Proc. Natl. Acad. Sci. USA 88, 2302–2306.

    PubMed  CAS  Google Scholar 

  134. Lee, K. B., Desai, U. R., Palcic, M. M., Hindsgaul, O., and Lindhardt, R. J. (1992) An electrophoresisbased assay for glycosyltransferase activity.Anal. Biochem. 205, 108–114.

    PubMed  CAS  Google Scholar 

  135. Taverna, M., Baillet, A., Boiu, D., Schluter, M., Werner, R., and Ferrier, D. (1992) Analysis of carbohydrate-mediated heterogeneity and characterization of N-linked oligosaccharides of glycoproteins by high-performance capillary electrophoresis.Electrophoresis 13, 359–366.

    PubMed  CAS  Google Scholar 

  136. Kuhn, R., Frei, L. R., and Christen, M. (1994) Use of capillary affinity electrophoresis for the determination of lectin-sugar interactions.Anal. Biochem. 218, 131–135.

    PubMed  CAS  Google Scholar 

  137. Oefner P. J. and Chiesa, C. (1994) Capillary electrophoresis of carbohydrates.Glycobiology 4, 397–412.

    PubMed  CAS  Google Scholar 

  138. Oefner P. J. and Scherz, H. (1994) Capillary electrophoresis and thin-layer electrophoresis of carbohydrates, inAdvances in Electrophoresis, vol. 7 (Chrambach, A., Dunn, M. J., and Radola, B., eds.), VCH, Weinheim, Germany, pp. 157–224.

    Google Scholar 

  139. Moseley, M. A., Deterding, L. J., Tomer, K. B., and Jorgenson, J. W. (1991) Nanoscale packed-capillary liquid chromatography coupled with mass spectrometry using a coaxial continuous-flow fast atom bombardment interface.Anal. Chem. 63, 1467–1473.

    PubMed  CAS  Google Scholar 

  140. Suzuki-Sawada, J., Umeda, Y., Kondo, A., and Kato, I. (1992) Analysis of oligosaccharides by on-line high-performance liquid chromatography and ion-spray mass spectrometry.Anal. Biochem. 207, 203–207.

    PubMed  CAS  Google Scholar 

  141. Kornfeld, S. and Kornfeld, R. (1978)The Glycoconjugates, vol. II (Horowitz, M. I. and Pigman, W., eds.), Academic, New York, pp. 437–449.

    Google Scholar 

  142. Clegg, J. C. S. (1982) Glycoprotein detection in nitrocellulose transfers of electrophoretically separated protein mixtures using concanavalin A and peroxidase: application to arenavirus and flavivirus proteins.Anal. Biochem. 127, 389–394.

    PubMed  CAS  Google Scholar 

  143. Merkle, R. K. and Cummins, R. D. (1987) Lectin affinity chromatography of glycopeptides.Methods Enzymol. 138, 232–259.

    PubMed  CAS  Google Scholar 

  144. Zopf, P., Ohlson, S., Dakour, J., Wang, W., and Lundblad, A. (1989) Analysis and justification of oligosaccharides by high-performance liquid affinity chromatography.Methods Enzymol. 179, 55–64.

    PubMed  CAS  Google Scholar 

  145. Kobata, A. and Endo, T. (1992) Immobilized lectin columns: useful tools for the fractionation and structural analysis of oligosaccharides.J. Chromatogr. 597, 111–122

    PubMed  CAS  Google Scholar 

  146. Lee, K. B., Kim, Y. S., and Linhardt, R. J. (1992) Lectin affinity electrophoresis for the separation of fluorescently labeled sugar derivatives.Anal. Biochem. 203, 206–210.

    PubMed  CAS  Google Scholar 

  147. Magnani, J. L. (1987) Immunostaining free oligosaccharides directly on thin-layer chromatograms.Methods Enzymol. 138, 208–212.

    PubMed  CAS  Google Scholar 

  148. Mizuochi, T., Loveless, R. W., Lawson, A. M., Chai, W., Lachmann, P. J., Childs, R. A., Thiel, S., and Feizi, T. (1989) A library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins reveals that conglutinin binds to certain complex-type as well as high mannose-type oligosaccharide chains.J. Biol. Chem. 264, 13,834–13,839.

    CAS  Google Scholar 

  149. Ohbayashi, H., Endo, T., Yamashita, K., Kuroki, M., Matsuoka, Y., and Kobata, A. (1989) Novel methods to determine the epitopes on the asparagine-linked oligosaccharides of glycoproteins.Anal. Biochem. 182, 200–206.

    PubMed  CAS  Google Scholar 

  150. Mizuochi, T. (1991) Preparation of oligosaccharide probes (neoglycolipids) and their application to the elucidation of functions of the glycoprotein oligosaccharide chains.Trends Glycobiol. Glycotechnol. 3, 435–437.

    CAS  Google Scholar 

  151. Edge, C. J., Rademacher, T. W., Wormald, M. R., Parekh, R. B., Butters, T. D., Wing, D. R., and Dwek, R. A. (1992) Fast sequencing of oligosaccharides: the reagent-array analysis method.Proc. Natl. Acad. Sci. USA 89, 6338–6342.

    PubMed  CAS  Google Scholar 

  152. Kobata, A. and Yamashita, K. (1994) Fractionation of oligosaccharides by serial affinity chromatography with the use of immobilized lectin columns, inGlycobiology: A Practical Approach (Fukuda, M. and Kobata, A., eds.), IRL, Oxford, pp. 103–125.

    Google Scholar 

  153. Kobata, A. and Takasaki, S. (1994) Structural characterization of oligosaccharides from glycoproteins, inGlycobiology: A Practical Approach (Fukuda, M. and Kobata, A., eds.), IRL, Oxford, pp. 165–185.

    Google Scholar 

  154. Jackson, P. (1993) Fluorophore-assisted carbohydrate electrophoresis: a new technology for the analysis of glycans.Biochem. Soc. Trans. 21, 121–125.

    PubMed  CAS  Google Scholar 

  155. Jackson, P. (1990) The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-l,3,6-trisulphonic acid.Biochem. J. 270, 705–713.

    PubMed  CAS  Google Scholar 

  156. Jackson, P. and Williams, G. R. (1990) Polyacrylamide gel electrophoresis of reducing saccharides labeled with the fluorophore 8-aminonaphthalene1,3,6-trisulphonic acid: application to the enzymological structural analysis of oligosaccharides.Electrophoresis 12, 94–96.

    Google Scholar 

  157. Jackson, P. (1991) Polyacrylamide gel electrophoresis of reducing saccharides labeled with the fluorophore 2-aminoacridone: subpicomolar detection using an imaging system based on a cooled charge-coupled device.Anal. Biochem. 196, 238–244.

    PubMed  CAS  Google Scholar 

  158. Stack, R. J. and Sullivan, M. T. (1992) Electrophoretic resolution, and fluorescence detection of N-linked glycoprotein oligosaccharides after reductive amination with 8-aminonaphthalene-l,3,6-trisulfonic acid.Glycobiology 2, 85–92.

    PubMed  CAS  Google Scholar 

  159. Lee, K.-B., Al-Hakim, A., Loganathan, D., and Linhardt, R. J. (1991) A new method for sequencing linear oligosaccharides on gels using charged fluorescent conjugates.Carbohydrate Res. 214, 155–168.

    CAS  Google Scholar 

  160. Jackson, P. and Williams, G. R. (1988)Analysis of Carbohydrates, patent publication no. WO88/10422.

  161. Jackson, P. (1991)Analysis of Carbohydrates, patent publication no. WO91/05256.

  162. Jackson, P. (1991)Treatment of Carbohydrates, patent publication no. WO91/05265.

  163. Jackson, P. (1992)Analysis of Carbohydrates, patent publication no. WO92/11531

  164. Jackson, P. (1993)Analysis of Carbohydrates, patent publication no. WO93/02356.

  165. Jackson, P. (1994) High-resolution polyacrylamide gel electrophoresis of fluorophore-labeled reducing saccharides.Methods Enzymol. 230, 250–256.

    PubMed  CAS  Google Scholar 

  166. Jackson, P. (1994) The analysis of fluorophorelabeled glycans by high resolution polyacrylamide gel electrophoresis.Anal. Biochem. 216, 243–752.

    PubMed  CAS  Google Scholar 

  167. Jackson, P. (1994) The analysis of fluorophore labeled saccharides by high-resolution polyacrylamide gel electrophoresis, inAdvances in Electrophoresis, vol. 7 (Chrambach, A., Dunn, M. J., and Radola, B., eds.), VCH, Weinheim, Germany, pp. 225–262.

    Google Scholar 

  168. Jackson, P.(1994) The use of polyacrylamide gel electrophoresis for the analysis of acidic glycans labeled with the fluorophore 2-aminoacridone.Electrophoresis 15, 896–902.

    PubMed  CAS  Google Scholar 

  169. Hu, G.-F. and Vallee, B. L. (1994) A gel retardation assay for the interaction of proteins and carbohydrates by fluorophore-assisted carbohydrate electrophoresis.Anal. Biochem. 218, 185–191.

    PubMed  CAS  Google Scholar 

  170. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head proteins of bacteriophage.Nature (London) 227, 680–685.

    CAS  Google Scholar 

  171. Hase, S. and Ikenaka, T. (1990) Estimation of elution times on reverse phase high-performance liquid chromatography of pyridylamino derivatives of sugar chains from glycoproteins.Anal. Biochem. 184, 135–138.

    PubMed  CAS  Google Scholar 

  172. Tomiya, N., Awaya, J., Kurono, M, Endo, S., Arata, Y., and Takahashi, N. (1988) Analyses of N-linked oligosaccharides using a two-dimensional mapping technique.Anal. Biochem. 171, 73–90.

    PubMed  CAS  Google Scholar 

  173. Takahashi, N., Wada, Y., Awaya, J., Kurono, M., and Tomiya, N. (1993) Two-dimensional elution map of GalNAc-containing N-linked oligosaccharides.Anal. Biochem. 208, 96–108.

    PubMed  CAS  Google Scholar 

  174. Suzuki, S., Kakehi, K., and Honda, S. (1992) Twodimensional mapping of N-glycosidically linked asialooligisaccharides from glycoproteins as reductively pyridylaminated derivatives using dual separation modes of high performance capillary electrophoresis.Anal. Biochem. 205, 227–236.

    PubMed  CAS  Google Scholar 

  175. Lee, M. K. and Lander, A. D. (1991) Analysis of affinity and structural selectivity in the binding of proteins to glycosaminoglycans: development of a sensitive electrophoretic approach.Proc. Natl. Acad. Sci. USA 88, 2768–2772.

    PubMed  CAS  Google Scholar 

  176. Pappa, A., Jackson, P., Munro, P. M. G., Fells, P., and Lightman, S. (1993)Transactions of the 21st Meeting of the European Strabismological Association (Kaufmann, H., ed.), pp. 359–363.

  177. Zhao, J. Y., Dovichi, N. J., Hindsgaul, O., Gosselin, X. S., and Palcic, M. M. (1994) Detection of 100 molecules of product formed in a fucosyltransferase reaction.Glycobiology 4, 239–242.

    PubMed  CAS  Google Scholar 

  178. Liu, J., Shirota, O., and Novotny, M. V. (1992) Sensitive, laser-assisted determination of complex oligosaccharide mixtures separated by capillary gel electrophoresis at high resolution.Anal. Chem. 64, 973–975.

    PubMed  CAS  Google Scholar 

  179. Aresequell, G., Dwek, R. A., and Wong, S. Y. C. (1994) 9-fluorenylmethoxycarbonyl (fmoc)-glycine coupling of saccharide β-glycosylamines for the fractionation of oligosaccharides and the formation of neoglycoconjugates.Anal. Biochem. 216, 165–170.

    Google Scholar 

  180. Toomre, D. K. and Varki, A. (1994) Advances in the use of biotinylated diaminopyridine (BAP) as a versatile fluorescent tag for oligosaccharides.Glycobiology 5, 653–663.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, P. The analysis of fluorophore-labeled carbohydrates by polyacrylamide gel electrophoresis. Mol Biotechnol 5, 101–123 (1996). https://doi.org/10.1007/BF02789060

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789060

Index entries

Navigation