Skip to main content
Log in

Adsorptive immobilization of submitochondrial particles on concanavalin a sepharose-4b

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Submitochondrial particles (SMPs) prepared from beef liver mitochondria were immobilized on concanavalin A Sepharose-4B (Con A Sepharose). The process of immobilization was optimized by choosing an appropriate buffer system containing Mn2+ and Ca2+. Adsorption of SMPs on Con A-Sepharose was found to be a reversible process, nonelectrostatic in nature, and responsive to the presence of methyl α-d-glucopyranose and α-d-mannose. The involvement of membrane glycoproteins in the adsorption process was thus demonstrated. Further analysis of the data obtained on competition of binding by sugar molecules provided competition constants reflecting the potency of inhibition by each individual carbohydrate. Positive-cooperative interactions for binding to the matrix were observed especially at high concentrations of SMPs. The immobilized preparations were used successfully in continuous catalytic transformations involving succinate-cytochrome c reductase (SCR) an enzyme complex of the inner-mitochondrial membrane. Best results were obtained when such operations were carried out at 37‡C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheatham, P. S. J. (1985), inHandbook of Enzyme Technology, Wiseman, A., ed, Ellis Harwood, Chichester, pp. 74–89.

    Google Scholar 

  2. Steadman, B. L., Thompson, K. C., and Middaugh, C. R. (1992),Biotech. Bioeng. 40, 8–15.

    Article  CAS  Google Scholar 

  3. Karkore, S. B. (1991), inProtein Immobilization—Fundamentals and Applications, Taylor, R.E., ed., Marcel Dekker, New York, pp. 319–331.

    Google Scholar 

  4. Carr, P. W. and Bowers, L. D. (1980),Immobilized Enzymes in Analytical and Clinical Chemistry, Wiley, New York.

    Google Scholar 

  5. Mosbach, K. and Mattiasson, B. (1976),Meth. Enzymol. 44, 453–488.

    Article  CAS  Google Scholar 

  6. Renneberg, R., Schubert, F., and Scheller, F. (1986),TIBS 11, 216–220.

    CAS  Google Scholar 

  7. Wingard, L. B., Katchalski-Katzir, E., and Goldstein, L. (1981),Analytical Applications of Immobilized Enzymes and Cells, Academic, New York.

    Google Scholar 

  8. Pour-Rahimi, F. and Nemat-Gorgani, M. (1987),Int. J. Biochem. 19, 53–61.

    Article  CAS  Google Scholar 

  9. Markwell, A. M. K., Suzanne, M. H., Tolbert, N. E., and Bieber, L. L. (1981),Meth. Enzymol. 72, 296–303.

    Article  CAS  Google Scholar 

  10. Mackler, B., Collip, P. J., Duncan, H. M., Rao N. A., and Heunnekens, F. M. (1962),J. Biol. Chem. 237, 2968–2974.

    CAS  Google Scholar 

  11. Weis, W. I., Drickamer, K., and Hendrichson, W. A. (1992),Nature 360, 127–134.

    Article  CAS  Google Scholar 

  12. Kalb, A. J. and Levitzki, A. (1968),Biochem. J. 109, 669–672.

    CAS  Google Scholar 

  13. Strasser, R. J., Millan, L., and Darszon, A. (1992),Biotechnol. Bioeng. 39, 1080–1085.

    Article  CAS  Google Scholar 

  14. Sharon, N. and Lis, H. (1993),Sci. Am. 268, 74–81.

    Google Scholar 

  15. Goldstein, I. J. and Hollerman, C. E. (1965),Biochemistry,4, 876–883.

    Article  CAS  Google Scholar 

  16. Portez, R. D. and Goldstein, I. J. (1970),Biochemistry,9, 2890–2896.

    Article  Google Scholar 

  17. Derewenda, Z, Yariv, J., Helliwell, J. R., Kalb Gilboa, A. J., Papiz, M. Z., Wan, T., and Campbell, J. (1989),EMBO. J. 8, 2189–2193.

    CAS  Google Scholar 

  18. Goldstein, I. J. and Protz, D. (1986), inThe Lectins: Properties, Functions, and Applications in Biology and Medicine, Liener, I. E., Sharon, N., and Goldstein, I. J., eds., Academic, Orlando, FL, pp. 51–85.

    Google Scholar 

  19. Kagawa, Y. (1972),Biochem. Biophys. Acta. 265, 297–338.

    CAS  Google Scholar 

  20. Tzagoloff, A. Rubin, M. S., and Sierra, M. F. (1973),Biochem. Biophys. Acta. 301, 71–104.

    CAS  Google Scholar 

  21. Baltscheffsky, H. and Baltscheffsky, M. (1974),Ann. Rev. Biochem. 43, 871–897.

    Article  CAS  Google Scholar 

  22. Sandermann, H. (1978),Biochem. Biophys. Acta. 515, 209–237.

    CAS  Google Scholar 

  23. Sandermann, H. (1982),Eur. J. Biochem. 127, 123–128.

    Article  CAS  Google Scholar 

  24. Gennis, R. B. (1989),Biomembranes, Moleculare Structure and Function, Springer-Verlag, New York.

    Google Scholar 

  25. Sharon, N. and Lis, H. (1993),Sci.Am. 268, 74–81.

    Article  Google Scholar 

  26. Barondes, S. H. (1988),TIBS,13, 480–482.

    CAS  Google Scholar 

  27. Kabat, E. A. (1978),J. Supramol. Struct. 8, 79–88.

    Article  CAS  Google Scholar 

  28. Martin, S. S. and Bosmann, H. B. (1971),EXP. Cell. Res. 66, 59–64.

    Article  Google Scholar 

  29. Lu, X. M., Figueroa, A., and Karger, B. L. (1988),J. Am. Chem. Soc. 110, 978–1979.

    Article  Google Scholar 

  30. Sharon, N. and Lis, H. (1990),Chem. Brit. 26, 679–682.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi-Rezaei, M., Neaaat-Gorgani, M. Adsorptive immobilization of submitochondrial particles on concanavalin a sepharose-4b. Appl Biochem Biotechnol 67, 165–181 (1997). https://doi.org/10.1007/BF02787850

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787850

Index Entries

Navigation