Skip to main content
Log in

Constraints on dynamical flavor symmetry breaking in quantum chromodynamics: Vafa-Witten theorem

Ограничения на динамическое нарушение симметрии аромата в квантовой хромодинамике: Теорема вафа-Виттена

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

We examine the Dyson-Schwinger equation for the quark propagator in quantum chromodynamics by employing the gauge technique with the object of investigating spontaneously broken flavor symmetry in the chiral limit of vanishing current quark masses. We show that dynamical breakdown of flavorSU V (N F ) symmetry does not occur, thus reiterating an assertion by Vafa and Witten. Our analysis is limited to three flavors but is generalizable to an arbitrary number of flavors,N F>3.

Riassunto

Si esamina l'equazione di Dyson-Schwinger per il propagatore di quark in cromodinamica quantistica impiegando la tecnica di gauge con l'obbiettivo di studiare la simmetria del sapore spontaneamente infranta nel limite chirale della masse dei quark di corrente tendenti a zero. Si mostra che la rottura dinamica della simmetria del saporeSU v (N F ) non avviene, rinforzando cosí un'asserzione di Vafa e Witten. La nostra analisi è limitata a tre sapori, ma è generalizzata a un numero zero arbitrario di saporiN F>3.

Резюме

Мы рассматриваем уравнение Дайсона-Швингера для кваркового пропагатора в квантовой хромодинамике, используя калибровочную технику, с целью исследования спонтанно нарушенной симметрии аромата в киральном пределе для исчезающе малых токовых кварковых масс. Мы показываем, что динамическое нарушениеSU V (N F ) симметрии аромата не возникает, т.е. подтверждается формулировка Вафа и Виттена. Наш анализ ограничен тремя ароматами, но может быть обобщен на произвольное число ароматов,N F>3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Marciano andH. Pagels:Phys. Rep. C,36, 137 (1978).

    Article  ADS  Google Scholar 

  2. Y. Nambu:Phys. Rev. Lett.,4, 380 (1960);Y. Nambu andG. Jona-Lasinio:Phys. Rev. 122, 345 (1961);J. Goldstone, A. Salam andS. Weinberg:Phys. Rev.,127, 965 (1962).

    Article  ADS  Google Scholar 

  3. S. Weinberg: inLectures in Elementary Particles and Quantum Field Theory, Brandeis University Summer Institute (MIT Press, Cambridge, Mass., 1970) p. 283.

    Google Scholar 

  4. J. Cornwall:Phys. Rev. D,22, 1452 (1980).

    Article  ADS  Google Scholar 

  5. J. Ball andP. Zachariasen:Phys. Lett. B,106, 133 (1981).

    Article  ADS  Google Scholar 

  6. R. Acharya andP. Narayana-Swamy:Phys. Rev. D,26, 2797 (1982).

    Article  ADS  Google Scholar 

  7. R. Acharya andP. Narayana-Swamy:Nuovo Cimento A,86, 157 (1985);Z. Phys. C,28, 463 (1985).

    Article  ADS  Google Scholar 

  8. R. Acharya andP. Narayana-Swamy:Nuovo Cimento A,95, 229 (1986).

    Article  ADS  Google Scholar 

  9. G. 't Hooft: lecture at the Cargese Summer Institute, 1979 (unpublished).

  10. G. Preskill andS. Weinberg:Phys. Rev. D,24, 1059 (1981).

    Article  ADS  Google Scholar 

  11. D. Weingarten:Phys. Rev. Lett.,51, 1830 (1983); other references cited therein.

    Article  ADS  Google Scholar 

  12. M. Cvetic: SLAC-PUB-3922, preprint, April 1986.

  13. S. Coleman andE. Witten:Phys. Rev. Lett.,45, 100 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Vafa andE. Witten:Nucl. Phys. B,234, 173 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Salam:Phys. Rev.,130, 1287 (1963);R. Delburgo andP. West:Phys. Lett. B,72, 3413 (1974);J. Phys. A,10, 1049 (1977);R. Delburgo andM. Scadron:J. Phys. G,5, 1621 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. Mandelstam:Phys. Rev. D,20, 3223 (1979).

    Article  ADS  Google Scholar 

  17. S. Weinber:Festschrift für I. I. Raby, edited byL. Motz (New York Academy of Sciences, New York, N. Y., 1977), p. 185. See alsoG. Feinbergs, P. Kabir andS. Weinberg:Phys. Rev. Lett.,3, 527 (1959).

    Google Scholar 

  18. See,e.g.,L. H. Ryder:Quantum Field Theory (Cambridge University Press, Cambridge, 1985), p. 261.

    MATH  Google Scholar 

  19. J. Ball andT. Chiu:Phys. Rev. D,22, 2542 (1980).

    Article  ADS  Google Scholar 

  20. H. Pagels andS. Stokar:Phys. Rev. D,20, 2947 (1979).

    Article  ADS  Google Scholar 

  21. J. Cornwall:Phys. Rev. D,26, 1453 (1982).

    Article  ADS  Google Scholar 

  22. K. Johnson andM. Baker:Phys. Rev. D,8, 1110 (1973), and references therein;S. L. Adler andW. Bardeen:Phys. Rev. D,4, 3045 (1971).

    Article  ADS  Google Scholar 

  23. J. E. King:Phys. Rev. D,27, 1821 (1983).

    Article  ADS  Google Scholar 

  24. See alsoJ. Ball: inWorkshop on nonperturbative quantum chromodynamics edited byK. Milton andM. Samuel (Birkhauser Publishers, Boston, Mass., 1983).

    Google Scholar 

  25. J. Gasser andH. Leutwyler:Phys. Rep. C,87, 78 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

Traduzione a cura della Redazione

Перевебено ребакцией.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, R., Swamy, P.N. Constraints on dynamical flavor symmetry breaking in quantum chromodynamics: Vafa-Witten theorem. Nuov Cim A 98, 773–786 (1987). https://doi.org/10.1007/BF02786828

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786828

PACS. 11.30. Qc.

PACS. 11.10.Np.

Navigation