Skip to main content
Log in

Regulation of cell signaling by the protein tyrosine phosphatases, CD45 and SHP-1

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

An equilibrium between positive and negative regulation of immunoreceptor signaling leads to the proper execution of lymphocyte activation. Tyrosine phosphorylation is the initial event in antigen receptor-induced lymphocyte activation. It is generally accepted that protein tyrosine kinases are involved in positive regulation, whereas protein tyrosine phosphatases are important for the negative regulation of tyrosine phosphorylation-dependent processes. However, the interaction between protein tyroine kinases and protein tyrosine phosphatases is complex. This article discusses the role of two protein tyrosine phosphatases, CD45 and SHP-1, in the regulation of immunoreceptor signaling. SHP-1 acts as a negative regulator for several immunoreceptors, including those for T-and B-cell antigen receptors. The major role of CD45 is in the positive regulation of T- and B-cell antigen receptor signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trowbridge IS, Thomas ML: CD45: an emerging role as a pro- tein tyrosine phosphatase required for lymphocyte activation and development. Ann Rev Immunol 1994;12:85–116.

    CAS  Google Scholar 

  2. Thomas ML, Reynolds PJ, Chain A, Ben-Neriah Y, Trowbridge IS: B-cell variant of mouse T200 (Ly-5): evidence for alternative mRNA splicing. Proc Natl Acad Sci USA 1987;84:5360–5363.

    PubMed  CAS  Google Scholar 

  3. Streuli M, Hall LR, Saga Y, Schlossman SF, Saito H: Differ- ential usage of three exons gen- erates at least five different mRN As encoding human leukocyte com- mon antigens. J Exp Med 1987; 166:1548–1566.

    PubMed  CAS  Google Scholar 

  4. Saga Y, Lee JS, Saraiya C, Boyse EA: Regulation of alternative splicing in the generation of iso-forms of the mouse Ly-5 (CD45) glycoprotein. Proc Natl Acad Sci USA 1990;87:3728–3732.

    PubMed  CAS  Google Scholar 

  5. Chang H-L, Lefrancois L, Zarouk-ian MH, Esselman WJ: Devel- opmental expression of CD45 alternative exons in murine T cells. J Immunol 1991; 147:1687–1693.

    PubMed  CAS  Google Scholar 

  6. Rogers PR, Pilapil S, Hayakawa K, Romain PL, Parker DC: CD45 alternative exon expression in murine and human CD4+ T cell subsets. J Immunol 1992;148: 4054–4065.

    PubMed  CAS  Google Scholar 

  7. Ledbetter JA, Tonks NK, Fischer EH, Clark EA: CD45 regulates signal transduction and lympho- cyte activation by specific associa- tion with receptor molecules on T or B cells. Proc Natl Acad Sci USA 1988;85:8628–8632.

    PubMed  CAS  Google Scholar 

  8. Goldman SJ, Uniyal S, Ferguson LM, Golan DE, Burakoff SJ, Kiener PA: Differential activation of phosphotyrosine protein phos- phatase activity in a murine T cell hybridoma by monoclonal anti- bodies to CD45. J Biol Chem 1992; 267:6197–6204.

    PubMed  CAS  Google Scholar 

  9. Kiener PA, Mittler RS:CD45-protein tyrosine phosphatase cross-linking inhibits T cell receptor CD3 -mediated activation in human T cells. J Immunol 1989;143:23–28.

    PubMed  CAS  Google Scholar 

  10. Hasegawa K, Nishimura H, Ogawa S, Hirose S, Sato H, Shirai T: Monoclonal antibodies to epitope of CD45R (B220) inhibit inter- leukin 4-mediated B cell prolif- eration and differentiation. Int Immunol 1990;2:367–375.

    PubMed  CAS  Google Scholar 

  11. Smeland EB, Holte H, Blomhoff HK, Asheim HC, Stokke T, Torje-sen P, Funderud S: Inhibition of polyphosphoinositide breakdown and c-myc induction accompany- ing inhibition of human B-cell activation by two monoclonal antibodies against the leucocyte common antigen (CD45). Scand J Immunol 1990;31:583–591.

    PubMed  CAS  Google Scholar 

  12. Marvel J, Poirier G, Lightstone E: Anti-CD45RA antibodies increase the proliferation of mouse T cells to phytohemagglutinin through the interleukin 2/interleukin 2 receptor pathway. Eur J Immunol 1989;19:2005–2010.

    PubMed  CAS  Google Scholar 

  13. Schraven B, Roux M, Hutmacher B, Meuer SC: Triggering of the alternative pathway of human T cell activation involves members of the T200 family of glycopro- teins. Eur J Immunol 1989; 19: 397–403.

    PubMed  CAS  Google Scholar 

  14. Pingel JT, Thomas ML: Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 1989;58:1055–1065.

    PubMed  CAS  Google Scholar 

  15. Weaver CT, Pingel JT, Nelson JO, Thomas ML: CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phospha- tase have impaired responses to T- cell receptor stimuli. Mol Cell Biol 1991;11:4415–4422.

    PubMed  CAS  Google Scholar 

  16. Koretzky GA, Picus J, Schultz T, Weiss A: Tyrosine phosphatase CD45 is required for T-cell anti-gen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 produc- tion. Proc Natl Acad Sci USA 1991;88:2037–2041.

    PubMed  CAS  Google Scholar 

  17. Peyron JF, Verma S, deWaal MalefytR, Sancho J, Terhorst C, Spits H: The CD45 protein tyro- sine phosphatase is required for the completion of the activation program leading to lymphokine production in the Jurkat human T cell line. Int Immunol 1991;3: 1357–1366.

    PubMed  CAS  Google Scholar 

  18. Pingel JT, Cahir McFarland ED, Thomas ML: Activation of CD45- deficient T cell clones by lectin mitogens but not anti-Thy-1. Int Immunol 1994;6:169–178.

    PubMed  CAS  Google Scholar 

  19. Koretzky GA, Picus J, Thomas ML, Weiss A: Tyrosine phospha- tase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 1990;346:66–68.

    PubMed  CAS  Google Scholar 

  20. Volarevic S, Niklinska BB, Burns CM, Yamada H, June CH, Dumont FJ, Ashwell JD: The CD45 tyrosine phosphatase regulates phospho- tyrosine homeostasis and its loss reveals anovel pattern of late T cell receptor-induced Ca2+ oscillations. J Exp Med 1992;176:835–844.

    PubMed  CAS  Google Scholar 

  21. Koretzky GA, Kohmetscher MA, Kadleck T, Weiss A: Restoration of T cell receptor-mediated signal transduction by transfection of CD45 cDNA into a CD45-deficient variant of the Jurkat T cell line. J Immunol 1992;149:1138–1142.

    PubMed  CAS  Google Scholar 

  22. Ogimoto M, Katagiri T, Mashima K, Hasegawa K, Mizuno K, Yakura H: Negative regulation of apoptotic death in immature B cells by CD45. Int Immunol 1994;6:647–654.

    PubMed  CAS  Google Scholar 

  23. Ogimoto M, Katagiri T, Mashima K, Hasegawa K, Mizuno K, Yakura H: Antigen receptor-initiated growth inhibition is blocked in CD45-loss variants of a mature B lymphoma, with limited effects on apoptosis. J Immunol 1995;25: 2265–2271.

    CAS  Google Scholar 

  24. Justement LB, Campbell KS, Chien NC, Cambier JC: Regu- lation of B cell antigen receptor signal transduction and phosphor- ylation by CD45. Science 1991; 252:1839–1842.

    PubMed  CAS  Google Scholar 

  25. Kishihara K, Penninger J, Wallace VA, Kundig TM, Kawai K, Wake-ham A, Timms E, Pfeffer K, Ohashi PS, Thomas ML, Furlonger C, Paige CJ, Mak TW: Normal B lymphocyte development but impaired T cell maturation in CD45- exon 6 protein tyrosine phospha- tase-deficient mice. Cell 1993;74: 143–156.

    PubMed  CAS  Google Scholar 

  26. Benatar T, Carsetti R, Furlonger C, Kamalia N, Mak T, Paige CJ: Immunoglobulin-mediated signal transduction in B cells from CD45- deficient mice. J Exp Med 1996; 183:329–334.

    PubMed  CAS  Google Scholar 

  27. Cyster JG, Healy JI, Kishihara K, Mak TW, Thomas ML, Goodnow CC: Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 1996;381:325–328.

    PubMed  CAS  Google Scholar 

  28. Malissen B, Ku G, Hermans M, Vivier E, Malissen M: Genetic dissociation of the transducing subunits of the T-cell antigen receptor. Ann NY Acad Sci 1995; 766:173–181.

    PubMed  CAS  Google Scholar 

  29. Sefton B, Taddie JA: Role of tyro- sine kinases in lymphocyte activa- tion. Curr Opinion Immunol 1994; 6:372–379.

    CAS  Google Scholar 

  30. Chan AC, Desai DM, Weiss A: The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu Rev Immunol 1994;12:555–592.

    PubMed  CAS  Google Scholar 

  31. Hombach J, Tsubata T, Leclercq L, Stappert H, Reth M: Molecular components of the B-cell antigen receptor complex of the IgM class. Nature (Lond) 1990;343:760–762.

    CAS  Google Scholar 

  32. Lee S-K, Shaw A, Maher S, Bothwell A: p59fyn tyrosine kinase regulates p56lck tyrosine kinase activity and early TCR-mediated signaling. Int Immunol 1994;6: 1621–1627.

    PubMed  CAS  Google Scholar 

  33. Cambier JC, Bedzyk W, Campbell K, Chien N, Friedrich J, Harwood A, Jensen W, Pleiman C, Clark MR: The B-cell antigen receptor: structure and function of primary, secondary, tertiary and quarternary components. Immunol Rev 1993; 132:85–106.

    PubMed  CAS  Google Scholar 

  34. Chan AC, Shaw AS: Regulation of antigen receptor signal transduction by protein tyrosine kinases. Curr Opin Immunol 1996;8:394–401.

    PubMed  CAS  Google Scholar 

  35. Weiss A: T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 1993;73:209–212.

    PubMed  CAS  Google Scholar 

  36. Mustelin T, Pessa-Morikawa T, Autero M, Gassmann M, Andersson L, Gahmberg CG, Burn P: Regulation of the p59fyn protein tyrosine kinase by the CD45 phos- photyrosine phosphatase. Eur J Immunol 1992;22:1173–1178.

    PubMed  CAS  Google Scholar 

  37. Mustelin T, Altman A: Dephos- phorylation and activation of the T cell tyrosine kinase p56lck by the leukocyte common antigen (CD45). Oncogene 1990;5:809–813.

    PubMed  CAS  Google Scholar 

  38. Ng DHW, Watts JD, Aebersold R, Johnson P: Demonstration of a direct interaction between p56lck and the cytoplasmic domain of CD45in vitro. J Biol Chem 1996; 271:1295–1300.

    PubMed  CAS  Google Scholar 

  39. Schraven B, Kirchgessner H, Gaber B, Samstag Y, Meuer S: A functional complex is formed in human T lymphocytes between the protein tyrosine phosphatase CD45, the protein tyrosine kinase p56lck and pp32, a possible sub- strate. Eur J Immunol 1991;21: 2469–2477.

    PubMed  CAS  Google Scholar 

  40. Koretzky GA, Kohmetscher M, Ross S: CD45-associated kinase activity requireslck but not T cell receptor expression in the Jurkat T cell line. J Biol Chem 1993;268: 8958–8964.

    PubMed  CAS  Google Scholar 

  41. Guttinger M, Gassmann M, Amrein KE, Burn P: CD45 phosphotyrosine phosphatase and p56lck protein tyrosine kinase: a functional com- plex crucial in T cell signal trans- duction. Int Immunol 1992;4: 1325–1330.

    PubMed  CAS  Google Scholar 

  42. Biffen M, McMichael-Phillips D, Larson T, Venkitaraman A, Alex- ander D: The CD45 tyrosine phos- phatase regulates specific pools of antigen receptor-associated p59fyn and CD4-associated p56lck tyro- sine kinases in human T-cells. EMBO J 1994;13:1920–1929.

    PubMed  CAS  Google Scholar 

  43. Ostergaard HL, Schackelford DA, Hurley TR, Johnson P, Hyman R, Sefton BM, Trowbridge IS: Expres- sion of CD45 alters phosphoryla- tion of the lck-encoded tyrosine protein kinase in murine lymph- oma T-cell lines. Proc Natl Acad Sci USA 1989;86:8959–8963.

    PubMed  CAS  Google Scholar 

  44. Cahir McFarland ED, Hurley TR, Pingel JT, Sefton BM, Shaw A, Thomas ML: Correlation between Src-family member regulation by the protein tyrosine phosphatase, CD45, and transmembrane signal- ing through the T-cell receptor. Proc Natl Acad Sci USA 1993;90: 1402–1406.

    Google Scholar 

  45. Hurley TR, Hyman R, Sefton BM: Differential effects of expression of the CD45 tyrosine protein phos- phatase on the tyrosine phos- phorylation of thelck, fyn, andc-src tyrosine protein kinases. Mol Cell Biol 1993;13:1651–1656.

    PubMed  CAS  Google Scholar 

  46. Cooper JA, Howell B: The when and how of Src regulation. Cell 1993;73:1051–1054.

    PubMed  CAS  Google Scholar 

  47. Sieh M,BolenJB, Weiss A: CD45 specifically modulates binding of Lck to a phosphopeptide encom- passing the negative regulatory tyrosine of Lck. EMBO J 1993;12: 315–321.

    PubMed  CAS  Google Scholar 

  48. Gervais F, Veillette A: The unique amino-terminal domain of p56lck regulates interactions with tyro- sine protein phosphatases in T lymphocytes. Mol Cell Biol 1995; 15:2393–2401.

    PubMed  CAS  Google Scholar 

  49. D’oroU, Sakaguchi K, Appella E, Ashwell JD: Mutational analysis of lck in CD45-negative T cells: dominant role of tyrosine 394 phosphorylation in kinase activity. Mol Cell Biol 1996;16:4996–5003.

    Google Scholar 

  50. Deans JP, Kanner SB, Torres RM, Ledbetter JA: Interaction of CD4: lck with the T cell receptor/CD3 complex induces early signaling events in the absence of CD45 tyro- sine phosphatase. Eur J Immunol 1992;22:661–668.

    PubMed  CAS  Google Scholar 

  51. Burns CM, Sakaguchi K, Appella E, Ashwell JD: CD45 regulation of tyrosine phosphorylation and enzyme activity ofsrc family kinases. J Biol Chem 1994;269: 13,594–13,600.

    CAS  Google Scholar 

  52. Brown VK, Ogle EW, Burkhardt AL, Rowley RB, Bolen J, Juste- ment LB: Multiple components of the B cell antigen receptor complex associate with the protein tyrosine phosphatase, CD45. J Biol Chem 1994;269: 17,238–17,244.

    CAS  Google Scholar 

  53. Katagiri T, Ogimoto M, Hase- gawa K, Mizuno K, Yakura H: Selective regulation of Lyn tyro- sine kinase by CD45 in immature B cells. J Biol Chem 1995;270: 27,987–27,990.

    CAS  Google Scholar 

  54. Mustelin T, Williams S, Tailor P, Couture C, Zenner G, Burn P, Ashwell JD, Altman A: Regula- tion of the p70zap tyrosine protein kinase in T cells by the CD45 phosphotyrosine phosphatase. Eur J Immunol 1995;25:942–946.

    PubMed  CAS  Google Scholar 

  55. Furukawa T, Itoh M, Krueger NX, Streuli M, Saito H: Specific interaction of the CD45 protein- tyrosine phosphatase with tyro- sine-phosphorylated CD3 ζ chain. Proc Natl Acad Sci USA 1994; 91:10,928–10,932.

    CAS  Google Scholar 

  56. Schraven B, Schirren A, Kirch- gessner H, Siebert B, Meuer SC: Four CD45/p56lck-associated phos- phoproteins (pp29-pp32) undergo alterations in human T cell acti- vation. Eur J Immunol 1992;22: 1857–1863.

    PubMed  CAS  Google Scholar 

  57. Takeda A, Maizel AL, Kitamura K, Ohta T, Kimura S: Molecular cloning of the CD45-associated 30-kDa protein. J Biol Chem 1994;269:2357–2360.

    PubMed  CAS  Google Scholar 

  58. Shimizu Y, Ogawa H, Oka Y, Mizuno R, Sakoda S, Kishimoto T, Sugiyama H: Isolation of a cDNA clone encoding a novel membrane protein expressed in lymphocytes. FEBS Lett 1994; 355:30–34.

    PubMed  CAS  Google Scholar 

  59. Schraven B, Schoenhaut D, Bruyns E, Koretzky G, Eckerskorn C, Wallich R, Kirchgessner H, Sakor- afas P, Labkovsky B, Ratnofsky S, Meuer S: LPAP, a novel 32-kDa phosphoprotein that interacts with CD45 in human lymphocytes. J Biol Chem 1994;269:29,102–29,111.

    CAS  Google Scholar 

  60. Kitamura K, Maiti A, Ng DHW, Johnson P, Maizel AL, Takeda A: Characterization of the interaction between CD45 and CD45-AP. J Biol Chem 1995;270:21,151–21,157.

    CAS  Google Scholar 

  61. Cahir McFarland ED, Thomas ML: CD45 protein tyrosine phosphatase associates with the WW domain- containing protein, CD45AP, through the transmembrane region. J Biol Chem 1995;270:28,103–28,107.

    Google Scholar 

  62. Bruyns E, Hendricks-Taylor LR, Meuer S, Koretzky GA, Schraven B: Identification of the sites of interaction between lymphocytes phosphatase-associated phospho- protein (LPAP) and CD45. J Biol Chem 1996;270:31,372–31,376.

    Google Scholar 

  63. Macias MJ, Hyvonen M, Baraldi E, Schultz J, Sudol M, Saraste M, Oschkinat H: Structure of the WW domain of a kinase-associated pro- tein complexed with a proline-rich peptide. Nature 1996; 382:646–649.

    PubMed  CAS  Google Scholar 

  64. Staub O, Cho S, Henry PC, Correa J, Ishikawa T, McGlade J, Rotin D: WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J 1996; 15:2371–2380.

    PubMed  CAS  Google Scholar 

  65. Chan DC, Bedford MT, Leder P: Formin binding proteins bear WWP/WW domains that bind pro- line-rich peptides and functionally resemble SH3 domains. EMBO J 1996;15:1045–1054.

    PubMed  CAS  Google Scholar 

  66. Volarevic S, Niklinska BB, Burns CM, June CH, Weissman AM, Ashwell JD: Regulation of TCR sig- naling by CD45 lacking transmem- brane and extracellular domains. Science 1993;260:541–543.

    PubMed  CAS  Google Scholar 

  67. Hovis RR, Donovan JA, Musci MA, Motto DG, Goldman FD, Ross SE, Koretzky GA: Rescue of signaling by a chimeric protein containing the cytoplasmic domain of CD45. Science 1993;260:544–546.

    PubMed  CAS  Google Scholar 

  68. Luqman M, Bottomly K: Activa- tion requirements for CD4+ T cells differing in CD45R expression. J Immunol 1992;149:2300–2306.

    PubMed  CAS  Google Scholar 

  69. Sakai T, Agui T, Matsumoto K: Abnormal CD45RC expression and elevated CD45 protein tyro- sine phosphatase activity in LEC rat peripheral CD4+ T cells. Eur J Immunol 1995;25:1399–1404.

    PubMed  CAS  Google Scholar 

  70. Novak TJ, Farber D, Leitenberg D, Hong S-C, Johnson P, Bottomly K: Isoforms of the transmembrane tyrosine phosphatase CD45 differ- entially affect T cell recognition. Immunity 1994;l:109–119.

    Google Scholar 

  71. McKenney DW, Onodera H, Gor- man L, Mimura T, Rothstein DM: Distinct isoforms of the CD45 protein-tyrosine phosphatase differentially regulate interleukin 2 secretion and activation signal pathways involving Vav in T cells. J Biol Chem 1995;270: 24,949–24,954.

    CAS  Google Scholar 

  72. Chui D, Ong CJ, Johnson P, Teh H-S, Marth JD: Specific CD45 isoforms differentially regulate T cell receptor signaling. EMBO J 1994;13:798–807.

    PubMed  CAS  Google Scholar 

  73. Beverley PCL: Is T-cell memory maintained by crossreactive stim- ulation? Immunol Today 1990;11: 203–205.

    PubMed  CAS  Google Scholar 

  74. Mackay CR: T-cell memory: the connection between function, phe- notype and migration pathways. Immunol Today 1991;12:189–192.

    PubMed  CAS  Google Scholar 

  75. Akbar AN, Salmon M, Janossy G: The synergy between naive and memory T cells during activation. Immunol Today 1991;12:184–188.

    PubMed  CAS  Google Scholar 

  76. Dianzani U, Redoglia V, Malavasi F, Bragardo M, Piled A, Janeway CA Jr, Bottomly K: Isoform-spe- cific associations of CD45 with accessory molecules in human T lymphocytes. Eur J Immunol 1992; 22:365–371.

    PubMed  CAS  Google Scholar 

  77. Dianzani U, Luqman M, Rojo J, Yagi J, Baron JL, Woods A, Janeway CA Jr, Bottomly K: Molecu- lar associations on the T cell surface correlate with immuno- logical memory. Eur J Immunol 1990;20:2249–2257.

    PubMed  CAS  Google Scholar 

  78. Collins TL, Kassner PD, Bierer BE, Burakoff SJ: Adhesion receptors in lymphocyte activation. Curr Opin- ion Immunol 1994;6: 385–393.

    CAS  Google Scholar 

  79. Shimizu Y, Van Seventer G, Horgan K, Shaw S: Costimulation of proliferative responses of rest- ing CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibro- nectin or VLA-6 with laminin. J Immunol 1990;145:59–67.

    PubMed  CAS  Google Scholar 

  80. Van Seventer GA, Shimizu Y, Horgan KJ, Shaw S: The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol 1990; 144:4579–4586.

    PubMed  Google Scholar 

  81. Ybarrondo B, O’Rourke AM, Brian AA, Mescher MF: Contribution of lymphocyte function-associated-1/ intracellular adhesion molecule-1 binding to the adhesion/signaling cascade of cytotoxic T lymphocyte activation. J Exp Med 1994;179: 359–363.

    PubMed  CAS  Google Scholar 

  82. Dustin ML, Springer TA: T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 1989;341:619–624.

    PubMed  CAS  Google Scholar 

  83. Maguire JE, Danahey KM, Burkly LC, Van SeventerGA: T cell receptor- and b1 integrin-mediated signals synergize to induce tyrosine phosphorylation of focal adhesion kinase (ppl25FAK) in human T cells. J Exp Med 1995; 182:2079–2090.

    PubMed  CAS  Google Scholar 

  84. Sato T, Tachibana K, Nojima Y, D’Avirro N, Morimoto C: Role of the VLA-4 molecule in T cell costimulation. J Immunol 1995; 155:2938–2947.

    PubMed  CAS  Google Scholar 

  85. Richardson A, Parsons J.T.: Signal transduction through integrins: a central role for focal adhesion kinase? BioEssays 1995;17:229–236.

    PubMed  CAS  Google Scholar 

  86. Clark EA, Brugge JS: Integrins and signal transduction pathways: the road taken. Science 1995;268: 233–239.

    PubMed  CAS  Google Scholar 

  87. Arroyo A, Campanero M, Sanchez- Mateos P, Zapata J, Ursa M, Angel del Pozo M, S’anchez-Madrid F: Induction of tyrosine phosphory- lation during ICAM-3 and LFA-1- mediated intercellular adhesion, and its regulation by the CD45 phosphatase. J Cell Biol 1994; 126:1277–1286.

    PubMed  CAS  Google Scholar 

  88. Zapata JM, Campanero MR, Marazuela M, S’anchez-Madrid F, de Land’azuriMO: B-cell homo- typic adhesion through exon-A restricted epitopes of CD45 involves LFA-1/ICAM-1, ICAM- 3 interactions, and induces coclus- tering of CD45 and LFA-1. Blood 1995;86:1861–1872.

    PubMed  CAS  Google Scholar 

  89. Bernard G, Zoccola D, Ticchioni M, Breittmayer J-P, Aussei C, Bernard A: Engagement of the CD45 molecule induces a homo- typic adhesion of human thy- mocytes through a LFA-1/ ICAM-3-dependent pathway. J Immunol 1994;152:5161–5170.

    PubMed  CAS  Google Scholar 

  90. Spertini F, Wang A, Chatila T, Geha R: Engagement of the com- mon leukocyte antigen CD45 induces homotypic adhesion of activated human T cells. Am Assos of Immunol 1994;1994:1593–1602.

    Google Scholar 

  91. Lorenz H-M, Harrer T, Lagoo AS, Baur A, Eger G, Kalden JR: CD45 mAb induces cell adhesion in peripheral blood mononuclear cells via lymphocyte function-associ- ated antigen-1 (LFA-1) and inter- cellular cell adhesion molecule 1 (ICAM-1). Cell Immunol 1993; 147:110–128.

    PubMed  CAS  Google Scholar 

  92. Lorenz H-M, Lagoo AS, Hardy KJ: The cell and molecular basis of leukocyte common antigen (CD45)-triggered, lymphocyte function-associated antigen-1-/ intercellular adhesion molecule-1- dependent, leukocyte adhesion. Blood 1994;83:1862–1870.

    PubMed  CAS  Google Scholar 

  93. Shultz LD, Green MC: Motheaten, an immunodeficient mutant of the mouse. II. Depressed immune competence and elevated serum immunoglobulin. J Immunol 1976; 116:936–943.

    PubMed  CAS  Google Scholar 

  94. Plutzky J, Neel BG, Rosenberg RD: Isolation of a src homology 2- containing tyrosine phosphatase. Proc Natl Acad Sci USA 1992; 89:1123–1127.

    PubMed  CAS  Google Scholar 

  95. Shen S-H, Bastien L, Posner BI, Chr’etien P: A protein-tyrosine phosphatase with sequence sim- ilarity to the SH2 domain of the protein-tyrosine kinases. Nature 1991;352:736–739.

    PubMed  CAS  Google Scholar 

  96. Yi T, Cleveland JL, Ihle JN: Protein tyrosine phosphatase containing SH2 domains: Characterization, preferential expression in hemato- poietic cells, and localization to human chromosome 12p12-p13. Mol Cell Biol 1992;12:836–846.

    PubMed  CAS  Google Scholar 

  97. Matthews RJ, Bowne DB, Flores E, Thomas ML: Characterization of hematopoietic intracellular protein tyrosine phosphatases: Description of a phosphatase containing an SH2 domain and another enriched in proline-, gluta- mic acid-, serine-, and threonine- rich sequences. Mol Cell Biol 1992; 12:2396–2405.

    PubMed  CAS  Google Scholar 

  98. Freeman RM Jr, Plutzky J, Neel BG: Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog ofDrosophila corkscrew. Proc Natl Acad Sci USA 1992;89: 11, 239-11, 243.

    Google Scholar 

  99. Feng G-S, Hui C-C, Pawson T: SH2-containing phosphotyrosine phosphatase as a target of protein- tyrosine kinases. Science 1993; 259:1607–1611.

    PubMed  CAS  Google Scholar 

  100. Vogel W, Lammers R, Juang J, Ullrich A: Activation of a phospho- tyrosine phosphatase by tyrosine phosphorylation. Science 1993; 259:1611–1614.

    PubMed  CAS  Google Scholar 

  101. Ahmad S, Banville D, Zhao Z, Fischer EH, Shen S-H: A widely expressed human protein-tyrosine phosphatase containingsrc homol- ogy 2 domains. Proc Natl Acad Sci USA 1993;90:2197–2201.

    PubMed  CAS  Google Scholar 

  102. Perkins LA, Larsen I, Perrimon N:corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the ter- minal signal from the receptor tyrosine kinase torso. Cell 1992; 70:225–236.

    PubMed  CAS  Google Scholar 

  103. Yi T, Ihle JN: Association of hema- topoietic cell phosphatase with c- Kit after stimulation with c-Kit ligand. Mol Cell Biol 1993;13: 3350–3358.

    PubMed  CAS  Google Scholar 

  104. Yeung Y-G, Berg KL, Pixley FJ, Angeletti RH, Stanley ER: Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1. J Biol Chem 1992;267:23,447–23,450.

    CAS  Google Scholar 

  105. Klingmüller U, Lorenz U, Cantley L, Neel B, Lodish H: Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termina- tion of proliferative signals. Cell 1995;80:729–738.

    PubMed  Google Scholar 

  106. Yi T, Mui AL-F, Krystal G, Ihle JN: Hematopoietic cell phospha- tase associates with the interleu- kin-3 (IL-3) receptor b chain and down-regulates IL-3 induced tyro- sine phosphorylation and mito- genesis. Mol Cell Biol 1993;13: 7577–7586.

    PubMed  CAS  Google Scholar 

  107. Olcese L, Lang P, Very F, Cambi- aggi A, Marguet D, Blery M, Hippen KL, Biassoni R, Moretta A, Moretta L, Cambier JC, Vivier E: Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phos- phatases. J Immunol 1996; 156: 4531–4534.

    PubMed  CAS  Google Scholar 

  108. Burshtyn DN, Scharenberg AM, Wagtmann N, Rajagopalan S, Berrada K, Yi T, Kinet J-P, Long EO: Recruitment of tyrosine phos- phatase HCP by the killer cell inhib- itory receptor. Immunity 1996; 4: 77–85.

    PubMed  CAS  Google Scholar 

  109. Doody G, Justement L, Delibrias C, Matthews R, Lin J, Thomas M, Fearon D: A role in B cell activa- tion for CD22 and the protein tyrosine phosphatase SHP. Sci- ence 1995;269:242–244.

    CAS  Google Scholar 

  110. Pani G, Kozlowski M, Cambier JC, Mills GB, Siminovitch KA: Identification of the tyrosine phos- phatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signalling. J Exp Med 1995;181:2077–2084.

    PubMed  CAS  Google Scholar 

  111. Cyster JG, Goodnow CC: Protein tyrosine phosphatase 1C nega- tively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 1995;2:13–24.

    PubMed  CAS  Google Scholar 

  112. D’Ambrosio D, Hippen KL, Minskoff SA, Mellman I, Pani G, Siminovitch KA, Cambier JC: Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by FcyRIIB 1. Science 1995;268: 293–296.

    PubMed  CAS  Google Scholar 

  113. Lorenz U, Ravichandran KS, Burakoff SJ, Neel BG: Lack of SH-PTP1 results in src-family kinase hyperactivation and thy- mocyte hyperresponsiveness. Proc Natl Acad Sci USA 1996; 93:9624–9629.

    PubMed  CAS  Google Scholar 

  114. Plas DR, Johnson R, Pingel JT, Matthews RJ, Dalton M, Roy G, Chan AC, Thomas ML: Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science 1996;272:1173–1176.

    PubMed  CAS  Google Scholar 

  115. Pei D, Lorenz U, Klingmüller U, Neel BG, Walsh CT: Intra- molecular regulation of protein tyrosine phosphatase SH-PTP1: a new function for Src homol- ogy domains. Biochemistry 1994; 33:15,483–15,493.

    CAS  Google Scholar 

  116. Townley R, Shen S-H, Banville D, Ramachandran C: Inhibition of the activity of protein tyrosine phospha- tase 1C by its SH2 domains. Bio- chemistry 1993;32:13,414–13,418.

    CAS  Google Scholar 

  117. Pei D, Wang J, Walsh CT: Dif- ferential functions of the two Src homology 2 domains in protein tyrosine phosphatase SH-PTP1. Proc Natl Acad Sci USA 1996; 93:1141–1145.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulyanova, T., Blasioli, J. & Thomas, M.L. Regulation of cell signaling by the protein tyrosine phosphatases, CD45 and SHP-1. Immunol Res 16, 101–113 (1997). https://doi.org/10.1007/BF02786326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02786326

Key Words

Navigation