Skip to main content
Log in

Synergistic antitumour effects of chemo-immunotherapy with an oxazaphosphorine drug and IL-2-secreting cells in a mouse colon cancer model

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The therapeutic efficacies of two chemical agents—cyclophosphamide (CY) and compound CBM-11—were compared in a chemo-immunotherapy protocol combining a single injection of a cytotoxic agent with a series of weekly peritumoural (p.t.) administrations of nontumourigenic plasmocytoma cells engineered to produce interleukin-2 (IL-2). Compound CBM-11, an optically active S(−) isomeric form of a bromine-substituted analogue of ifosfamide, is currently used in Phase I clinical trials in Poland. The treatment was applied to mice bearing well-established subcutaneous (s.c.) MC-38 colon tumours. Single intraperitoneal injection of 200 mg/kg of CY or of an equitoxic dose of 140 mg/kg of CBM-11 alone resulted in a tumour growth delay (TGD) of 10–13 and 17–21 d, respectively. This effect was accompanied by an increase in life-span (ILS) of at most 42 and 62% over control. Complete responses (CR) were not observed. Combination of CY or CBM-11 with 6–7 p.t. injections of IL-2-secreting cells resulted in potentiation of the therapeutic effects: TGD and ILS values were considerably increased and long-lasting CRs were observed. The overall incidence of CR after combined treatment was ca 16% and 42% for CY and CBM-11, respectively (P=0.049). A specific anti-MC-38 immunity was induced by the treatment, as verified by rechallenge of cured mice with MC-38 tumour cells 3–4 months post therapy cessation. Our results indicate that tumour destruction by chemotherapy (even if not complete) and prolonged local delivery of IL-2 secreted by allogeneic cells of an easy to culture line are sufficient to secure long-lasting specific antitumour immunity in cured mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pardoll DM. Paracrine cytokine adjuvants in cancer immunotherapy.Annu Rev Immunol 1995;13: 399–415.

    Article  CAS  PubMed  Google Scholar 

  2. Janssen RAJ, Mulder NH, Hauw The T, de Leij L. The immunobiological effects of interleukin-2 in vivo.Cancer Immunol Immunother 1994;39: 207–216.

    Article  CAS  PubMed  Google Scholar 

  3. Sone S, Ogura T. Local interleukin-2 immunotherapy.Oncology 1993;51: 170–176.

    Article  Google Scholar 

  4. Sencer SF, Rich ML, Katsanis E, Ochoa AC, Anderson PM. Antitumor vaccine adjuvant effects of IL-2 liposomes in mice immunized against MCA-102 sarcoma.Aur Cytokine Network 1993;2: 311–318.

    Google Scholar 

  5. Egilmez NKet al. Cytokine immunotherapy of cancer with controlled release biodegradable microspheres in a human tumor xenograft/SCID mouse model.Cancer Immunol Immunother 1998;46: 21–24.

    Article  CAS  PubMed  Google Scholar 

  6. Cordier Let al. Complete recovery of mice from a pre-established tumor by direct intratumoral delivery of an adenovirus vector harboring the murine IL-2 gene.Gene Ther 1995;2: 16–21.

    CAS  PubMed  Google Scholar 

  7. Addison CLet al. Intratumoral injection of an adenovirus expressing interleukin 2 induces regression and immunity in a murine breast cancer model.Proc Natl cad Sci USA 1995;92: 8522–8526.

    Article  CAS  Google Scholar 

  8. Lattime EC, Lee SS, Eisenlohr LC, Mastrangelo MJ. In situ cytokine gene transfection using vaccinia virus vectors.Semin Oncol 1996;23: 88–100.

    CAS  PubMed  Google Scholar 

  9. Schmidt-Wolf GD, Schmidt-Wolf IGH. Cytokines and gene therapy.Immunol Today 1995;16: 173–175.

    Article  CAS  PubMed  Google Scholar 

  10. Jaffee EM, Pardoll DM. Considerations for the clinical development of cytokine gene-transduced tumor cell vaccines.Methods 1997;12: 143–153.

    Article  CAS  PubMed  Google Scholar 

  11. Parmiani G, Colombo MP, Melani C, Arienti F. Cytokine gene transduction in the immunotherapy of cancer.Adv Pharmacol 1997;40: 259–307.

    Article  CAS  PubMed  Google Scholar 

  12. Bannerji R, Arroyo CD, Cordon-Cardo C, Gilboa E. The role of IL-2 secreted from genetically modified tumor cells in the establishment of antitumor immunity.J Immunol 1994;152: 2324–2332.

    Article  CAS  PubMed  Google Scholar 

  13. Cavallo Fet al. Protective and curative potential of vaccination with interleukin-2 gene tranfected cells from a spontaneous mouse mammary adenocarcinoma.Cancer Res 1993;53: 5076–5080.

    Google Scholar 

  14. Chiang C-S, Dougherty GJ, Economou JS, McBride WH. Tumor-directed cytokine gene therapy. In: Hui KM (ed).Gene Therapy. From Laboratory to Clinic, World Scientific: Singapore 1994; pp 21–44.

    Google Scholar 

  15. Katsanis Eet al. Interleukin-2 gene transfer into murine neuroblastoma decreases tumorigenicity and enhances systemic immunity causing regression of pre-established retroperitoneal tumors.J Immunother 1994;15: 81–90.

    Article  CAS  Google Scholar 

  16. Dong P, Brunn C, Ho RJY. Cytokines as vaccine adjuvants. Current status and potential application. In: Powell MF and Newman MJ (eds).Vaccine Design: The Subunit and Adjuvant Approach. Plenum Press: New York, 1995, pp 625–643.

    Chapter  Google Scholar 

  17. Taylor CE. Cytokines as adjuvants for vaccines: antigen-specific responses differ from polyclonal responses.Infect Immun 1995;63: 3241–3244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Knight BC, Souberbielle BE, Rizzardi GP, Ball SE, Dalgleish AG. Allogeneic murine melanoma cell vaccine: a model for the development of human allogeneic cancer vaccine.Melanoma Res 1997;6: 299–306.

    Article  Google Scholar 

  19. Shawler DLet al. Comparison of gene therapy with interleukin-2 gene modified fibroblasts and tumor cells in the murine CT-26 model of colorectal carcinoma.J Immunother 1995;17: 201–208.

    Article  CAS  Google Scholar 

  20. Mackensen Aet al. Induction of tumor-specific cytotoxic T lymphocytes by immunization with autologous tumor cells and interleukin-2 gene-transfected fibroblasts.J Mol Med 1997;75: 290–296.

    Article  CAS  PubMed  Google Scholar 

  21. Gilboa E, Nair SK, Lyerly HK. Immunotherapy of cancer with dendritic-cell-based vaccines.Cancer Immunol Immunother 1998;46: 82–87.

    Article  CAS  PubMed  Google Scholar 

  22. Armstrong TD, Pulaski BA, Ostrand-Rosenberg S. Tumor antigen presentation: changing the rules.Cancer Immunol Immunother 1998;46: 70–74.

    Article  CAS  PubMed  Google Scholar 

  23. Zatloukal Ket al. Elicitation of a systemic and protective anti-melanoma immune response by an IL-2-based vaccine.J Immunol 1995;154: 3406–3419.

    Article  CAS  PubMed  Google Scholar 

  24. Mitchell MS. Combining chemotherapy with biological response modifiers in treatment of cancer.J Natl Cancer Inst 1998;80: 1445–1450.

    Article  Google Scholar 

  25. Pajtasz-Piasecka E, Kuśnierczyk H, Salwa J, Konarski L, Radzikowski C. Growth inhibition of transplantable tumors in mice by mIL-2 secreting murine plasmocytoma cells used alone or in combination with cytostatic agent.Arch Immunol Ther Exp 1995;42: 281–292.

    Google Scholar 

  26. Glazman-Kuśnierczyk H, Pajtasz-Piasecka E, Radzikowski C. Interleukin-2 therapy potentiates the antitumor effect of cytostatic agent in mice with advanced transplantable tumors.Biotechnologia. Polish-Japan Issue 1996;4: 68–79.

    Google Scholar 

  27. Glazman-Kuśnierczyk H, Matuszyk J, Radzikowski C. Antitumor activity evaluation of bromine-substituted analogues of ifosfamide. I. Stereodifferentiation of biological effects and selection of the most potent compounds.Immunopharmacol Immunotoxicol 1992;14: 883–911.

    Article  PubMed  Google Scholar 

  28. Apostolopoulos V, Popoviski V, McKenzie IFC. Cyclophosphamide enhances the CTL precursor frequency in mice immunized with MUC1-mannan fusion protein (MFP).J Immunother 1998;21: 109–113.

    Article  CAS  PubMed  Google Scholar 

  29. Mescher MF, Rogers JD. Immunotherapy of established murine tumors with large multivalent immunogen and cyclophosphamide.J Immunother 1996;19: 102–112.

    Article  CAS  Google Scholar 

  30. Hosokawa Met al. Improved therapeutic effects of interleukin 2 after the accumulation of lymphokine-activated killer cells in tumor tissue of mice previously treated with cyclophosphamide.Cancer Immunol Immunother 1988;26: 250–256.

    Article  CAS  PubMed  Google Scholar 

  31. Kedar E, Ben-Aziz R, Epstein E, Leshem B. Chemo-immunotherapy of murine tumors using interleukin-2 (Il-2) and cyclophosphamide. IL-2 can facilitate or inhibit tumor growth depending on the sequence of treatment and the tumor type.Cancer Immunol Immunother 1989;29: 74–78.

    Article  CAS  PubMed  Google Scholar 

  32. Papa MZet al. Combined effects of chemotherapy and interleukin 2 in the therapy of mice with advanced pulmonary tumors.Cancer Res 1988;48: 122–129.

    CAS  PubMed  Google Scholar 

  33. Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr. Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure.Cancer Res 1975;35: 2434–2439.

    CAS  PubMed  Google Scholar 

  34. Corbett TH, Griswold DP Jr, Roberts BJ, Peckham JC, Schabel FM Jr. A mouse colon-tumor model for experimental therapy.Cancer Chemother Rep 1975;2(5): 169–186.

    Google Scholar 

  35. Karasuyama H, Melchers F. Establishment of mouse lines which constitutively secrete large quantities of interleukin-2,3,4 or 5 using modified cDNA expression vectors.Eur J Immunol 1988;18: 97–104.

    Article  CAS  PubMed  Google Scholar 

  36. Berg K, Hansen MB, Nielsen SE. Anew sensitive bioassay for precise quantification of interferon activity as measured via the dehydrogenase function in cells (MTT method).APMIS 1990;98: 156–162.

    Article  CAS  PubMed  Google Scholar 

  37. Indrova M, Pajtasz-Piasecka E, Radzikowski C, Bubenik J. CTLL assay: comparison of two methods for IL-2 determination.Folia Biol 1997;43: 45–47.

    CAS  Google Scholar 

  38. Mucci LoRusso Pet al. Antitumor efficacy of interleukin-2 alone and in combination with adriamycin and dacarbazine in murine solid tumor systems.Cancer Res 1990;50: 5876–5882.

    Google Scholar 

  39. Stec WJet al. Process for the production of the derivtives of 1,3,2-oxazaphosphorinane. Patented in Europe No 0 295 576 A2 (1988) and in the United States no 4, 908, 464 (1990).

  40. Light BWet al. Potentiation of cisplatin antitumor activity using a vitamin D analogue in a murine squamous cell carcinoma model system.Cancer Res 1997;57: 3759–3764.

    CAS  PubMed  Google Scholar 

  41. Begg AC. Principles and practices of the tumor growth delay assay. In: Kallman RF (ed).Rodent Tumor Models in Emperimental Cancer Therapy. Pergamon Press: New York, 1987, pp 114–121.

    Google Scholar 

  42. Van Kranenburg-Voogd PJ, Keizer HJ, van Putten LM. Experimental chemotherapy of transplantable mouse colon tumors.Eur J Cancer 1978;14: S153–157.

    Google Scholar 

  43. Musiani Pet al. Cytokines, tumour-cell death and immunogenicity: a question of choice.Immunol Today 1997;18: 32–36.

    Article  CAS  PubMed  Google Scholar 

  44. Cao Xet al. Chemoattractive effect on the effector cells of the supernatants from melanoma cells transfected with the interleukin-2 (IL-2), IL-4 or IL-6 gene.J Cancer Res Clin Oncol. 1998;124: 88–92.

    Article  CAS  PubMed  Google Scholar 

  45. Maass Get al. Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin 2-secreting tumor cells: three consecutive stages may be required for successful tumor vaccination.Proc Natl Acad Sci USA 1995;92: 5540–5544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mackall CL, Gress RE. Pathways of T-cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy.Immunol Rev 1997;157: 61–72.

    Article  CAS  PubMed  Google Scholar 

  47. Whiteside TL, Rabinovich H. The role of Fas/FasL in immunosuppression induced by human tumors.Cancer Immunol Immunother 1998;46: 175–184.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Kusnierczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusnierczyk, H., Pajtasz-Piasecka, E. & Radzikowski, C. Synergistic antitumour effects of chemo-immunotherapy with an oxazaphosphorine drug and IL-2-secreting cells in a mouse colon cancer model. Med Oncol 16, 267–278 (1999). https://doi.org/10.1007/BF02785873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785873

Keywords

Navigation