Skip to main content
Log in

The role of cytotoxic T-lymphocytes in the prevention and immune surveillance of tumors— lessons from normal and immunodeficient mice

  • Review
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The idea of immunological surveillance against cancer has existed for nearly 100 years but as no conclusive evidence has yet been published the importance of the cellular immune defense in the detection and removal of incipient or existing tumors is still a hotly debated subject. However, in order to select a relevant immunotherapeutic strategy in the treatment of cancer, a fundamental understanding of the basic immunologic conditions under which a tumor develops and exists is a prerequisite. Therefore, a murine model was set up that we hoped would enable us to confirm or reject the theory of immunological surveillance. A large panel of methylcholanthrene induced tumors was established in T-cell immunodeficient nude mice and congenic normal mice to study the influence of the immune system on developing tumors. As nude mice developed tumors fastest and with the highest incidence, we concluded that in this model the immune system constituted a ‘tumor-suppressive factor’ delaying and sometimes abrogating tumor growth, i.e. performing immune surveillance. Immunogenicity of the tumors was assessed by transplantation back to normal histocompatible mice. Tumors originating from the immunodeficient nude mice turned out to be far more immunogenic than tumors from normal mice, resulting in a high rejection rate. CD8+cytotoxic T cells were found to be indispensable for this rejection, leading to the conclusion that the cytotoxic T cells perform immune selection in normal mice, eliminating immunogenic tumor cell variants in the incipient tumor.

In this review, we discuss the difficulties facing immunotherapy when conclusions are drawn from the presented observations and hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burnet FM. The concept of immunological surveillance.Prog Expr Tumor Res 1970;13: 1–27.

    Article  CAS  Google Scholar 

  2. Ehrlich P. Über den jetzigen Stand der Karzinomforschung.Ned Tidschr Geneeskd 1909;1: 273–290.

    Google Scholar 

  3. Thomas L. On graft-rejection. In: Lawrence (ed).Cellular and Humoral Aspects of Hypersensitive States. New York: Harper, 1959; 529–533.

    Google Scholar 

  4. Makinodan T, Kay MMB Age influence on the immune system.Adv Immunol 1980;29: 287–330.

    Article  CAS  PubMed  Google Scholar 

  5. Groopman JE. Neoplasms in the acquired immune deficiency syndrome: the multidisciplinary approach to treatment.Semin Oncol 1987;14: 1–6.

    CAS  PubMed  Google Scholar 

  6. Penn I. Tumors of the immunocompromised patient.Ann Rev Med 1988;39: 63–73.

    Article  CAS  PubMed  Google Scholar 

  7. Good RA. Relations between immunity and malignancy.PNAS 1972;69: 1026–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hardie IRet al. Skin cancer in caucasian renal allograft recipients living in a subtropical climate.Surgery 1980;87: 177–183.

    CAS  PubMed  Google Scholar 

  9. Rygaard J, Povlsen CO. The nude mouse vs. the hypothesis of immunological surveillance.Transplant Rev 1976;28: 43–61.

    CAS  PubMed  Google Scholar 

  10. Stutman O. Tumor development after 3-methylcholanthrene in immunologically deficient athymic nude mice.Science 1974;183: 534–536.

    Article  CAS  PubMed  Google Scholar 

  11. Outzen HC, Custer RP, Eaton GJ, Prehn RT. Spontaneous and induced tumor incidence in germfree ‘nude’ mice.J Reticuloendothel Soc 1975;17: 1–9.

    CAS  PubMed  Google Scholar 

  12. Engel Aet al. Methylcholanthrene-induced sarcomas in nude mice have short induction times and relatively low levels of surface MHC class I expression.APMIS 1996;104: 629–639.

    Article  CAS  PubMed  Google Scholar 

  13. Engel A, Svane IM, Rygaard J, Werdelin O. MCA-sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice.Scan J Immunol 1997;45: 463–470.

    Article  CAS  Google Scholar 

  14. Nowell PC. Tumor progression and clonal evolution: The role of genetic instability.Chromosome Mut Neoplasia 1983; 413–432.

  15. Svane IMet al. Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice.Eur J Immunol 1996;26: 1844–1850.

    Article  CAS  PubMed  Google Scholar 

  16. Greenberg PD. Adoptive T cell therapy of tumors: Mechanisms operative in the recognition and elimination of tumor cells.Adv Immunol 1991;49: 281–355.

    Article  CAS  PubMed  Google Scholar 

  17. Shimizu K, Shen F. Role of different T cell sets in the rejection of syngenic chemically induced tumors.J Immunol 1979;122: 1162–1165.

    Article  CAS  PubMed  Google Scholar 

  18. Ward PL, Schreiber H. MHC class I restricted T cells and immune surveillance against transplanted ultraviolet light induced tumors.Semin Cancer Biol 1991;2: 321–328.

    CAS  PubMed  Google Scholar 

  19. Anichini A, Fossati G, Parmiani G. Clonal analysis of the cytolytic T-cell response to human tumors.Immunol Today 1987;8: 385–389.

    Article  CAS  PubMed  Google Scholar 

  20. Prehn RT, Main JM. Immunity to methylcholanthrene induced sarcomas.J Natl Cancer Inst 1957;18: 769–778.

    CAS  PubMed  Google Scholar 

  21. Klein Sjögren HO, Klein E, Hellström KE. Demonstration of resistance against methylcholanthrene induced sarcomas in the primary autochthonous host.Cancer Res 1960;20: 1561–1572.

    PubMed  Google Scholar 

  22. Kripke ML. Antigenicity of murine skin tumors induced by ultraviolet light.J Natl Cancer Inst 1974;53: 1333–1336.

    Article  CAS  PubMed  Google Scholar 

  23. Vaage J. Non-virus associated antigens in virus-induced mouse mammary tumors.Cancer Res 1968;28: 2477–2483.

    CAS  PubMed  Google Scholar 

  24. Koch S, Zaleberg JR, McKenzie IFC. Description of a murine B lymphoma tumor-specific antigen.J Immunol 1984;133: 1070–1077.

    Article  CAS  PubMed  Google Scholar 

  25. Boon Tet al. Tumor antigens recognized by T lymphocytes.Annu Rev Immunol 1994;12: 337–365.

    Article  CAS  PubMed  Google Scholar 

  26. van den Eynde B, Birchard VC. New tumor antigens recognized by T cells.Curr Opin Immunol 1995;7: 674–681.

    Article  PubMed  Google Scholar 

  27. Traversari Cet al. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E.J Exp Med 1992;176: 1453–1457.

    Article  CAS  PubMed  Google Scholar 

  28. Boon T. Toward a genetic analysis of tumor rejection antigens.Adv Cancer Res 1992;58: 177–210.

    Article  CAS  PubMed  Google Scholar 

  29. van der Bruggen P, van den Eynde B. Molecular definition of tumor antigens recognized by T lymphocytes.Curr Opin Immunol 1992;4: 608–612.

    Article  PubMed  Google Scholar 

  30. Schreiber H. Tumor Immunology. In: Paul WE (ed)Fundamental Immunology. New York: Raven Press, 1993; 1143–1178.

    Google Scholar 

  31. Knuth A, Wölfel T, zum Büschenfelde KM. T cell responses to human malignant tumors.Cancer Surv 1992;13: 39–52.

    CAS  PubMed  Google Scholar 

  32. Prehn RT, Karcher CA. Immunodepression by the oncogen does not determine the relationship between tumor latency and immunogenicity.Int J Cancer 1983;31: 227–229.

    Article  CAS  PubMed  Google Scholar 

  33. Rygaard J.Thymus and Self: Biology of the Mouse Mutant Nude. London: John Wiley, 1973.

    Google Scholar 

  34. Klein E, Mantovani A. Action of natural killer cells and macrophages in cancer.Curr Opin Immunol 1993;5: 714–718.

    Article  CAS  PubMed  Google Scholar 

  35. Ljunggren H, Kärre K. In search of the missing self: MHC molecules and NK recognition.Immunol Today 1990;11: 237–244.

    Article  CAS  PubMed  Google Scholar 

  36. Bodmer W. A new look a tumor immunology.Eur J Cancer 1992;28A: 1761–1762.

    Article  CAS  PubMed  Google Scholar 

  37. Storkus WJ, Dawson JR. Target structures involved in natural killing (NK): Characteristics, distribution and candidate molecules.Immunology 1991;10: 393–416.

    CAS  Google Scholar 

  38. Stutman O. Immunodepression and malignancy.Adv Cancer Res 1975;22 261–422.

    Article  CAS  PubMed  Google Scholar 

  39. Nunn ME, Herberman RB, Holden HT. Natural cell-mediated cytotoxicity in mice against non-lymphoid tumor cells and some normal cells.Int J Cancer 1977;20: 381–387.

    Article  CAS  PubMed  Google Scholar 

  40. Radzikowski Cet al. Strain- and age-dependent natural and activated in vitro cytotoxicity in athymic nude mice.APMIS 1994;102: 481–488.

    Article  CAS  PubMed  Google Scholar 

  41. Ortaldo JR, Herberman RB. Heterogeneity of natural killer cells.Ann Rev Immunol 1984;2: 359–394.

    Article  CAS  Google Scholar 

  42. Haliotis T, Ball JK, Dexter D, Roder JC. Spontaneous and induced primary oncogenesis in natural killer (NK) cell deficient beige mutant mice.Int J Cancer 1985;25: 505–513.

    Article  Google Scholar 

  43. Hanna N. The role of natural killer cells, NK cells, in the control of tumor growth and metastasis.Biochim Biophys Acta 1985;780: 213–226.

    CAS  PubMed  Google Scholar 

  44. Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. Distribution of reactivity and specificity.Int J Cancer 1975;16: 216–229.

    Article  CAS  PubMed  Google Scholar 

  45. Kiessling R, Klein E, Wigzell H. Natural killer cells in the mouse. I. Cytotoxic cells with specificity for Moloney leukemia cells. Specificity and distribution according to genotype.Eur J Immunol 1975;5: 112–117.

    Article  CAS  PubMed  Google Scholar 

  46. Talmadge JE, Meyers KM, Prieur DJ, Starkey JR. Role of natural killer cells in tumor growth and metastasis: C57BL/6 and beige mice.J Natl Cancer Inst 1980;65: 929–935.

    CAS  PubMed  Google Scholar 

  47. Becker S, Kiessling R, Lee N, Klein G. Modulation of sensitivity to natural killer cell lysis after in vitro explantation of mouse lymphoma.J Natl Cancer Inst 1978;61: 1495–1498.

    CAS  PubMed  Google Scholar 

  48. Masci AM, Scala S, Racioppi L, Zappacosta S. Cell surface expression of major histocompatibility class I antigens is modulated by P-Glycoprotein transporter.Human Immunol 1995;42: 245–253.

    Article  CAS  Google Scholar 

  49. Hanna N, Fidler IJ. Role of natural killer cells in the destruction of circulating tumor enboli.J Natl Cancer Inst 1980;65: 801–809.

    Article  CAS  PubMed  Google Scholar 

  50. Kawano Y-I, Taniguchi K, Toshitani A, Nomoto K. Synergistic defense system by cooperative natural effectors against metastasis of B16 melanoma cells in H-2 associated control: different behaviour of H-2+ and H-2- cells in metastatic processes.J Immunol 1986;136: 4729–4734.

    Article  CAS  PubMed  Google Scholar 

  51. Greenberg AH, Egan SE, Jarolin L, Gingras M-C, Wright JA. Natural killer cell recognition of implantation and early lung growth of H-ras-transformed 10T1/2 fibroblasts in mice.Cancer Res 1987;47: 4801–4805.

    CAS  PubMed  Google Scholar 

  52. Trinchieri G. Biology of natural killer cells.Adv Immunol 1989;47: 187–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moore M. Natural immunity to tumors-theoretical predictions and biological observations.Br J Cancer 1985;52: 147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen L, Linsley PS, Hellström KE. Costimulation of T cells for tumor immunity.Immunol Today 1993;14: 483–486.

    Article  CAS  PubMed  Google Scholar 

  55. Restifo NP, Wunderlich JR. Biology of cellular immune responses. In:Biologic therapy of cancer, De Vita VT, Hellman S, Rosenberg SA (eds) Philadelphia: JB Lippincott Company 1995; 3–37.

    Google Scholar 

  56. Matsumura M, Fremont DH, Peterson PA, Wilson IA. Emerging principles for the recognition of peptide antigens by MHC class I molecules.Science 1992;257: 927–934.

    Article  CAS  PubMed  Google Scholar 

  57. Wallny Het al. Identification and quantification of a naturally presented peptide as recognized by cytotoxic T lymphocytes specific for an immunogenic tumor variant.Int Immunol 1992;4: 1085–1090.

    Article  CAS  PubMed  Google Scholar 

  58. Christinck ER, Luscher MA, Barber BH, Williams DB. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis.Nature 1991;352: 67–70.

    Article  CAS  PubMed  Google Scholar 

  59. Sanda MGet al. Molecular characterization of defective antigen processing in human prostate cancer.J Natl Cancer Inst 1995;87: 280–285.

    Article  CAS  PubMed  Google Scholar 

  60. Restifo NPet al. Defective presentation of endogenous antigens by a murine sarcoma. Implications for the failure of an anti-tumor immune response.J Immunol 1991;147: 1453–1459.

    Article  CAS  PubMed  Google Scholar 

  61. Vitale Met al. HLA Class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions.Cancer Res 1998;58: 737–742.

    CAS  PubMed  Google Scholar 

  62. Svane IM, Engel A, Thomsen AR, Werdelin O. The susceptibility to cytotoxic T lymphocyte mediated lysis of chemically induced sarcomas from immunodeficient and normal mice.Scand J Immunol 1997;45: 28–35.

    Article  CAS  PubMed  Google Scholar 

  63. Cohen EP, Kim TS. Neoplastic cells that express low levels of MHC class I determinants escape host immunity.Semin Cancer Biol 1994;5: 419–428.

    PubMed  Google Scholar 

  64. Goodenow R, Vogel MJ, Linsk RL. Histocompatibility antigens on murine tumors.Science 1985;230: 777–783.

    Article  CAS  PubMed  Google Scholar 

  65. Browning M, Bodmer WF. MHC antigens and cancer: Implications for T-cell surveillance.Curr Opin Immunol 1992;4: 613–618.

    Article  CAS  PubMed  Google Scholar 

  66. Lopez-Nevot MAet al. HLA class I gene expression on human primary tumors and autologous metastases: demonstration of selective losses of HLA antigens on colorectal, gastric and laryngeal carcinomas.Br J Cancer 1989;59: 221–226.

    Article  CAS  PubMed  Google Scholar 

  67. McDougall CJet al. Reduced expression of HLA class I and class II antigens in colon cancer.Cancer Res 1990;50: 8023–8027.

    CAS  PubMed  Google Scholar 

  68. Garrido Fet al. Natural history of HLA expression during tumor development.Immunol Today 1993;14: 491–499.

    Article  CAS  PubMed  Google Scholar 

  69. Kaklamanis Let al. Loss of HLA class I alleles, heavy chains and beta-2-microglobulin in colorectal cancer.Int J Cancer 1992;51: 379–385.

    Article  CAS  PubMed  Google Scholar 

  70. Vegh S, Wang P, Vanky F, Klein E. Selectively down-regulated expression of major histocompatibility complex class I alleles in human solid tumors.Cancer Res 1993;53: 2416–2420.

    CAS  PubMed  Google Scholar 

  71. Garrido F, Cabrera T, Lopez-Nevot MA, Ruiz-Cabello F. HLA class I antigens in human tumors.Adv Cancer Res 1996;67: 155–195.

    Article  Google Scholar 

  72. Keating PJet al. Frequency of down-regulation of individual HLA-A and-B alleles in cervical carcinomas in relation to TAP-1 expression.Br J Cancer 1995;72: 405–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petersen BLet al. Expression of beta-2-microglobulin by premalignant epithelium.APMIS 1993;101: 529–536.

    Article  CAS  PubMed  Google Scholar 

  74. Torres LMet al. HLA class I expression and HPV-16 sequences in premalignant and malignant lesions of the cervix.Tissue Antigens 1993;41: 65–71.

    Article  CAS  PubMed  Google Scholar 

  75. Hilders CGJM, Houbiers JGA, Krul EJT, Fleuren GJ. The expression of histocampatibility leucocyte antigens in the pathway to cervical carcinoma.Am J Clin Pathol 1994;101: 5–12.

    Article  CAS  PubMed  Google Scholar 

  76. Concha A, Estaban F, Cabrera T, Ruiz-Cabello F, Garrido F. Tumor aggressiveness and MHC class I and II antigens in laryngeal and breast cancer.Semin Cancer Biol 1991;2: 47–54.

    CAS  PubMed  Google Scholar 

  77. Connor M, Davidson SE, Stern PL, Arrand JR, West CML. Evaluation of multiple biologic parameters in cervical carcinoma: high macrophage infiltration in HPV-associated tumors.Int J Gynecol Cancer 1993;32: 103–109.

    Article  Google Scholar 

  78. Doyle Aet al. Markedly decreased expression of class I histocompatibility antigens, protein, and mRNA in human small cell lung cancer.J Exp Med 1985;161: 1135–1151.

    Article  CAS  PubMed  Google Scholar 

  79. Lopez-Nevot MAet al. Phenotypic and genetic analysis of HLA class I and HLA-DR antigen expression on human melanomas.Exp Clin Immunogenet 1988;5: 203–212.

    CAS  PubMed  Google Scholar 

  80. Roth C, Rochlitz C, Kourilsky P. Immune response against tumors.Adv Immunol 1994;57: 281–351.

    Article  CAS  PubMed  Google Scholar 

  81. Wintzer HO, Benzing M, von Kleist S. Lacking prognostic significance of beta 2 microglobulin, MHC class I and class II antigen expression in breast carcinomas.Br J Cancer 1990;62: 289–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gutierrez Met al. Class I and II HLA antigen distribution in normal mucosa, adenoma and colon carcinoma: relation with malignancy and invasiveness.Exp Clin Immunogenet 1987;4: 114–152.

    Google Scholar 

  83. Polla BS, Kantengwa S. Heat shock proteins and inflammation. In: Kaufmann SHE (ed).Heat Shock Proteins and Immune Response. Berlin: Springer-Verlag, 1991; 93–108.

    Chapter  Google Scholar 

  84. Petersen BL, Brændstrup O Expression of beta-2-microglubulin by human benign and malignant mesenchymal and neurogenic tumours.Int J Exp Path 1993;74: 397–401.

    CAS  Google Scholar 

  85. Mechtersheimer Get al. Expression of HLA-A,B,C, beta-2-microglobulin (beta-2-m), HLA-DR,-DP,-DQ and of HLA-D-associated invariant chain (Ii) in soft-tissue tumors.Int J Cancer 1990;46: 813–823.

    Article  CAS  PubMed  Google Scholar 

  86. Kundig TMet al. Fibroblasts as efficient antigen-presenting cells in lymphoid organs.Science 1995;268: 1343–1347.

    Article  CAS  PubMed  Google Scholar 

  87. Maurer MK, Lotze MT. Tumor recognition by the cellular immune system: new aspects of tumor immunology.Int Rev Immunol 1997;14: 97–132.

    Article  Google Scholar 

  88. Engel A, Svane IM, Madsen MW, Pedersen M, Werdelin O. Screening of methylcholanthrene induced sarcomas from nude and nu/+ mice for molecular aberrations in the MHC class I restricted pathway for antigen processing.Clin Exp Immunol 1997;109: 323–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Svane IM, Engel A, Nielsen M, Werdelin O. Interferon-gamma induced MHC class I expression defects in Jak/-Stat signaling and detection of an aberrant Stat 1 protein, p78, in methylcholanthrene induced sarcomas.Scand J Immunol 1997;46: 379–387.

    Article  CAS  PubMed  Google Scholar 

  90. Pfeifer JDet al. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells.Nature 1993;361: 359–362.

    Article  CAS  PubMed  Google Scholar 

  91. Heike Met al. Membranes activate tumor and virus specific precursor cytotoxic T lymphocytes in vivo and stimulate tumor-specific T lymphocytes in vitro: Implications for Vaccination.J Immunother 1994;15: 165–174.

    Article  CAS  Google Scholar 

  92. Huang AYCet al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens.Science 1994;264: 961–965.

    Article  CAS  PubMed  Google Scholar 

  93. Pardoll DM. Paracrine cytokine adjuvants in cancer immunotherapy.Ann Rev Immunol 1995;13: 399–415.

    Article  CAS  Google Scholar 

  94. Alexander MA, Bennicelli J, Guerry D. Defective antigen presentation by human melanoma cell lines cultured from advanced, but not biologically early, disease.J Immunol 1989;142: 4070–4078.

    Article  CAS  PubMed  Google Scholar 

  95. Finn OJ. Tumor rejection antigens recognized by T lymphocytes.Curr Opin Immunol 1993;5: 701–708.

    Article  CAS  PubMed  Google Scholar 

  96. Berke G. The binding and lysis of target cells by cytotoxic T lymphocytes: molecular and cellular aspects.Ann Rev Immunol 1994;12: 735–773.

    Article  CAS  Google Scholar 

  97. Janeway CA, Travers P. T cell mediated immunity. In: Janeway CA, Travers P (eds)Immunobiology. Oxford: Blackwell Scientific Publications, 1994; 1–49.

    Google Scholar 

  98. Travis J. A stimulating new approach to cancer treatment.Science 1993;259: 310–311.

    Article  CAS  PubMed  Google Scholar 

  99. North RJ, DiGiacomo A, Dye ES. Suppression of antitumor immunity. In: Den Otter W, Ruitenberg EJ (eds).Tumor Immunol Mech Diag Ther. Elsevier: Amsterdam, 1987; pp 125–141.

    Google Scholar 

  100. North RJ. Down-regulation of the antitumor immune response.Adv. Cancer Res 1985;45: 1–43.

    Article  CAS  PubMed  Google Scholar 

  101. Von Roenn J, Harris JE, Braun DP. Suppressor cell function in solid tumor cancer patients.J Clin Oncol 1987;5: 150–159.

    Article  Google Scholar 

  102. Naor D, Duke-Cohan JS. Suppressor cells and malignancy. I. Suppressor macrophages and suppressor T cells in experimental animals.Adv Immun Cancer Ther 1986;2: 1–129.

    CAS  PubMed  Google Scholar 

  103. Aune TM. Role and function of antigen nonspecific suppressor factors.CRC Crit Rev Immunol 1987;7: 93–130.

    CAS  Google Scholar 

  104. Sulitzeanu D. Immunosuppressive factors in human cancer.Adv Cancer Res 1993;60: 247–267.

    Article  CAS  PubMed  Google Scholar 

  105. Loeffler CMet al. Immunoregulation in cancer-bearing hosts. Down-regulation of gene expression and cytotoxic function in CD8+T cells.J Immunol 1992;149: 949–956.

    Article  CAS  PubMed  Google Scholar 

  106. Chouaib S, Asselin-Paturel C, Mami-Chouaib F, Caignard A, Blay JY. The host-tumor immune conflict: from immunosuppression to resistance and destruction.Immunol Today 1997;18: 493–497.

    Article  CAS  PubMed  Google Scholar 

  107. Zou Jet al. Tumor-bearing mice exhibit a progressive increase in tumor antigen-presenting cell function and a reciprocal decrease in tumor antigen-responsive CD4+T cell activity.J Immunol 1992;148: 648–655.

    Article  CAS  PubMed  Google Scholar 

  108. Finke JH, Zea AH, Stanley J. Loss of T-cell receptor zeta chain and p56lck in T-cell infiltrating human renal cell carcinoma.Cancer Res 1993;53: 5613–5616.

    CAS  PubMed  Google Scholar 

  109. Mizoguchi Het al. Alterations in signal transduction molecules in T lymphocytes from tumor bearing mice.Science 1992;258: 1795–1798.

    Article  CAS  PubMed  Google Scholar 

  110. Levey DL, Srivastava PK. Alterations in T cells of cancer-bearers: whence specificity.Immunol Today 1996;17: 365–368.

    Article  CAS  PubMed  Google Scholar 

  111. Holzman D. New ‘Danger’ theory of immunology challenges old assumptions.J Natl Cancer Inst 1995;87: 1436–1438.

    Article  CAS  PubMed  Google Scholar 

  112. Ostrand-Rosenberg S. Tumor immunotherapy: the tumor cell as an antigen-presenting cell.Curr Opin Immunol 1994;6: 722–727.

    Article  CAS  PubMed  Google Scholar 

  113. Klein J. Defence against tumors. In: Anonymous (ed).Immunology Oxford: Blackwell Scientific, 1990; 419–428.

    Google Scholar 

  114. Gansbacher Bet al. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity.J Exp Med 1990;172: 1217–1224.

    Article  CAS  PubMed  Google Scholar 

  115. Gansbacher Bet al. Retroviral vector mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity.Cancer Res 1990;50: 7820–7825.

    CAS  PubMed  Google Scholar 

  116. Blankenstein Tet al. Tumorsuppression after tumor cell-targeted tumor necrosis factor alpha gene factor.J Exp Med 1991;173: 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  117. Gilboa E, Lyerly HK, Vieweg J, Saito S. Immunotherapy of cancer using cytokine gene modified tumor vaccines.Semin Cancer Biol 1994;5: 409–417.

    CAS  PubMed  Google Scholar 

  118. Chen Let al. Costimulation of antitumor immunity by the B7 counter receptor for the T lymphocyte molecules CD28 and CTLA-4.Cell 1992;71: 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  119. Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+cells by B7 transfected melanoma cells.Science 1993;259: 368–370.

    Article  CAS  PubMed  Google Scholar 

  120. Wang J, Saffold S, Cao X, Krauss J, Chen W. Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines.J Immunol 1998;161: 5516–5524.

    Article  CAS  PubMed  Google Scholar 

  121. Ahlert Tet al. Tumor-cell number and viability as quality and efficacy parameters of autologous virus-modified cancer vaccines in patients with breast or ovarian cancer.J Clin Oncol 1997;15: 1354–1366.

    Article  CAS  PubMed  Google Scholar 

  122. Barth RJ, Bock SN, Mule JJ, Rosenberg SA. Unique murine tumor associated antigens identified by tumor infiltrating lymphocytes.J Immunol 1990;144 1531–1537.

    Article  CAS  PubMed  Google Scholar 

  123. Robbins PFet al. Recognition of tyrosinase by tumor infiltrating lymphocytes from a patient responding to immunotherapy.Cancer Res 1994;54: 3124–3126.

    CAS  PubMed  Google Scholar 

  124. Yannelli JRet al. Growth of tumor-infiltrating lymphocytes from human solid cancers: Summary of a 5-year experience.Int J Cancer 1996;65: 413–421.

    Article  CAS  PubMed  Google Scholar 

  125. Rosenberg SA. The immunotherapy and gene therapy of cancer.J Clin Oncol 1992;10: 180–199.

    Article  CAS  PubMed  Google Scholar 

  126. Beun GDM, van de Velde DJH, Fleuren GJ. T-cell based cancer immunotherapy: direct or redirected tumor cell recognition?Immunol Today 1994;15: 11–15.

    Article  CAS  PubMed  Google Scholar 

  127. Chapman PB, Houghton AN. Non-antibody immunotherapy of cancer.Curr Opin Immunol 1993;5: 726–731.

    Article  CAS  PubMed  Google Scholar 

  128. Heaton KM, Grimm EA. Cytokine combinations in immunotherapy for solid tumors: a review.Cancer Immunol Immunother 1993;37: 213–219.

    Article  CAS  PubMed  Google Scholar 

  129. Balkwill FR, Burke F. The cytokine network.Immunol Today 1989;10: 299–304.

    Article  CAS  PubMed  Google Scholar 

  130. Chen C-H, Wu T-C. Experimental vaccine strategies for cancer immunotherapy.J Biomed Sci 1998;5: 231–252.

    Article  CAS  PubMed  Google Scholar 

  131. Osanto S. Vaccine trials for the clinican: prospects for tumor antigens.The Oncologist 1997;2: 284–299.

    Article  CAS  PubMed  Google Scholar 

  132. Paglia P, Guzman CA. Keeping the immune system alerted against cancer.Cancer Immunol Immunother 1998;46: 88–92.

    Article  CAS  PubMed  Google Scholar 

  133. Kageyama S, Tsomides T, Sykulev Y, Eisen HN. Variation in the number of peptide-MHC complexes required to activate cytotoxic T cell responses.J Immunol 1995;154: 567–576.

    Article  CAS  PubMed  Google Scholar 

  134. Chistinck ER, Lusher MA, Barber BH, Williams DB. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis.Nature 1991;352: 67–70.

    Article  Google Scholar 

  135. Durrant LG. Cancer vaccines.Anti-Cancer Drugs 1997;8: 727–733.

    Article  CAS  PubMed  Google Scholar 

  136. Velders MPet al. Identification of peptides for immunotherapy of cancer. It is still worth the effort.Crit Rev Immunol 1998;18: 7–27.

    Article  CAS  PubMed  Google Scholar 

  137. Kim CJ, Parkinson DR, Marincola F. Immunodominance across HLA polymorphism: implications for cancer immunotherapy.J Immunother 1998;21: 1–16.

    Article  PubMed  Google Scholar 

  138. Gilboa E, Nair SK, Lyerly HK. Immunotherapy of cancer with dendritic-cell-based vaccines.Cancer Immunol Immunother 1996;46: 82–87.

    Article  Google Scholar 

  139. Srivastava PK. Do human cancers express shared protective antigens? or The necessity of remembrance of things past.Semin Immunol 1996;8: 295–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to IM Svane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svane, I., Boesen, M. & Engel, AM. The role of cytotoxic T-lymphocytes in the prevention and immune surveillance of tumors— lessons from normal and immunodeficient mice. Med Oncol 16, 223–238 (1999). https://doi.org/10.1007/BF02785868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785868

Keywords

Navigation