Skip to main content
Log in

Copper-specific damage in human erythrocytes exposed to oxidative stress

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ascorbate and complexes of Cu(II) and Fe(III) are capable of generating significant levels of oxygen free radicals. Exposure of erythrocytes to such oxidative stress leads to increased levels of methemoglobin and extensive changes in cell morphology. Cu(II) per mole is much more effective than Fe(III). However, isolated hemoglobin is oxidized more rapidly and completely by Fe(III)- than by Cu(II)-complexes. Both Fe(III) and Cu(II) are capable of inhibiting a number of the key enzymes of erythrocyte metabolism. The mechanism for the enhanced activity of Cu(II) has not been previously established. Using intact erythrocytes and hemolysates we demonstrate that Cu(II)-, but not Fe(III)-complexes in the presence of ascorbate block NADH-methemoglobin reductase. Complexes of Cu(II) alone are not inhibitory. The relative inability of Fe(III)-complexes and ascorbate to cause methemoglobin accumulation is not owing to Fe(III) association with the membrane, or its failure to enter the erythrocytes. The toxicity of Cu(II) and ascorbate appears to be a result of site-specific oxidative damage of erythrocyte NADH-methemoglobin reductase and the enzyme's subsequent inability to reduce the oxidized hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Halliwell, and J. M. C. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview,Methods Enzymol. 186, 1–85 (1990).

    PubMed  CAS  Google Scholar 

  2. W. Pryor, Free radical biology: Xenobiotics, cancer, and aging,Ann. NY Acad. Sci. 393, 1–22 (1982).

    Article  PubMed  CAS  Google Scholar 

  3. P. Saltman, Oxidative stress: a radical view,Semin. Hematol. 26, 249–256 (1989).

    PubMed  CAS  Google Scholar 

  4. M. Chevion, A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals,Free Rad. Biol. Med. 5, 27–37 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. E. Shinar, T. Navok, and M. Chevion, The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper,J. Biol. Chem. 258, 14,778–14,783 (1983).

    CAS  Google Scholar 

  6. E. R. Stadtman, Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences,Free Rad. Biol. Med. 9, 315–325 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. B. van Dyke, D. A. Clopton, and P. Saltman, Buffer-induced anomalies in the Fenton chemistry of iron and copper,Inorg. Chim. Acta 242–243, 1–5 (1996).

    Google Scholar 

  8. R. L. Levine, Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue.J. Biol. Chem. 258, 11,823–11,827 (1983).

    CAS  Google Scholar 

  9. R. L. Levine, Oxidative modification of glutamin synthetase. II. Characterization of the ascorbate model system,J. Biol. Chem. 258, 11,828–11,833 (1983).

    CAS  Google Scholar 

  10. G. Marx, and M. Chevion, Site specific modification of albumin by free radicals. Reaction of copper(II) and ascorbate.Biochem. J. 236, 397–400 (1986).

    PubMed  CAS  Google Scholar 

  11. J. Masuoka, and P. Saltman, Zinc(II) and copper(II) binding to serum albumin. A comparative study of dog, bovine, and human albumin,J. Biol. Chem. 269, 25,557–25,561 (1994).

    CAS  Google Scholar 

  12. E. A. Rachmilewitz, E. Shinar, O. Shalev, U. Galilli, and S. L. Schrier, Erythrocyte membrane alterations in beta-thalassemia,Clin. Haematol. 14, 163–182 (1985).

    PubMed  CAS  Google Scholar 

  13. E. Shinar, O. Shalev, E. A. Rachmilewitz, and S. L. Schrier, Erythrocyte membrane skeleton abnormalities in severe beta-thalassemia,Blood 70, 158–164 (1987).

    PubMed  CAS  Google Scholar 

  14. R. P. Hebbel, Autooxidation and a membrane-associated “Fenton reagent” a possible explanation for development of membrane lesions in sickle erythrocytes,Clin. Haematol. 14, 129–140 (1985).

    PubMed  CAS  Google Scholar 

  15. R. P. Hebbel, and J. W. Eaton, Pathobiology of heme interaction with the erythrocyte membrane,Semin. Hematol. 26., 136–149 (1989).

    PubMed  CAS  Google Scholar 

  16. R. P. Hebbel, W. T. Morgan, J. W. Eaton, and B. E. Hedlund, Accelerated autoxidation and heme loss due to instability of sickle hemoglobin,Proc. Natl. Acad. Sci. USA 85, 237–241 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. T. Repka, O. Shalev, R. Reddy, J. Yuan, A. Abrahamov, E. A. Rachmilewitz, P. S. Low, and R. P. Hebbel, Non-random association of free iron with membranes of sickle and beta-thalassemic erythrocytes.Blood 82, 3204–3210 (1993).

    PubMed  CAS  Google Scholar 

  18. M. M. Kay, G. J. Bosman, S. S. Shapiro, A. Bendich, and P. S. Bassel, Oxidation as a possible mechanism of cellular aging: Vitamin E deficiency causes premature aging and IgG binding to erythrocytes,Proc. Natl. Acad. Sci. USA 83, 2463–2467 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. M. M. Kay, T. Wyant, and J. Goodman, Autoantibodies to band 3 during aging and disease and aging interventions,Ann. NY Acad. Sci. 719, 419–447 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. S. K. Jain, Evidence for membrane lipid peroxidation during thein vivo aging of human erythrocytes,Biochim. Biophys. Acta 937, 205–210 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. P. S. Low and R. Kannan, Effect of hemoglobin denaturation on membrane structure and IgG binding role in red cell aging.Prog. Clin. Biol. Res. 319, 525–546 (1989).

    PubMed  CAS  Google Scholar 

  22. E. Shinar, E. A. Rachmilewitz, A. Shifter, E. Rahamin, and P. Saltman, Oxidative damage to human red cells induced by copper and iron complexes in the presence of ascorbate,Biochim. Biophys. Acta 1014, 66–72 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. L. A. Eguchi, and P. Saltman, Kinetics and mechanisms of metal reduction by hemoglobin 1. Reduction of iron (III) complexes,Inorg. Chem. 26, 3665–3669 (1987).

    Article  CAS  Google Scholar 

  24. L. A. Eguchi, and P. Saltman, Kinetics and mechanisms of metal reduction by hemoglobin. 2. Reduction of copper(II) complexes,Inorg. Chem. 26, 3669–3672 (1987).

    Article  CAS  Google Scholar 

  25. C. C. Winterbourn, and R. W. Carrell, Oxidation of human haemoglobin by copper. Mechanism and suggested role of the thiol group of residue β-93.Biochem. J. 165, 141–148 (1977).

    PubMed  CAS  Google Scholar 

  26. A. Mansouri, and A. A. Lurie, Concise review: methemoglobinemia,Am. J. Hematol. 42, 7–12 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. C. R. Zerez, N. A. Lachant, and K. R. Tanaka, Impaired erythrocyte methemoglobin reduction in sickle cell disease: dependence of methemoglobin reduction on reduced nicotinamide adenine dinucleotide content,Blood 76, 1008–1014 (1990).

    PubMed  CAS  Google Scholar 

  28. M. Boulard, K.-G. Blume, and E. Beutler, The effect of copper on red cell enzyme activities,J. Clin. Invest. 51, 459–461 (1972).

    PubMed  CAS  Google Scholar 

  29. S. J. Forman, K. S. Kumar, A. G. Redeker, and P. Hochstein, Hemolytic anemia in Wilson disease: clinical findings and biochemical methods,Am. J. Hematol. 9, 269–275 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. E. Baysal, and C. A. Rice-Evans, Modulation of iron-mediated oxidant damage in erythrocytes by cellular energy levels,Free Rad. Res. Commun. 3, 227–232 (1987).

    Article  CAS  Google Scholar 

  31. A. Deiss, G. R. Lee, and G. E. Cartwright, hemolytic anemia in Wilson's disease,Ann. Intern. Med. 73, 413–418 (1970).

    PubMed  CAS  Google Scholar 

  32. J. P. Flikweert, R. K. J. Hoorn, and G. E. J. Staal, The effect of copper on human erythrocyte glutathione reductase,Int. J. Biochem. 5, 649–653 (1974).

    Article  CAS  Google Scholar 

  33. N. Shaklai, V. S. Sharma, and H. M. Ranney, Interaction of sickle cell hemoglobin with erythrocyte membranes.Proc. Natl. Acad. Sci. USA 78, 65–68 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. E. Baysal, S. G. Sullivan, and A. Stern, Binding of iron to human red cell membranes,Free Rad. Res. Commun. 8, 55–59 (1989).

    Article  CAS  Google Scholar 

  35. C. N. Oliver, B-W. Ahn, E. J. Moreman, S. Goldstein, and E. R. Stadtman, Age-related changes in oxidized proteins,J. Biol. Chem. 262, 5488–5491 (1987).

    PubMed  CAS  Google Scholar 

  36. D. R. Thorburn, and E. Beutler, Decay of hexokinase during reticulocyte maturation is oxidative damage a signal for destruction?,Biochem. Biophys. Res. Commun. 162, 612–618 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. V. Stocchi, B. Biagiarelli, M. Fiorani, F. Palma, G. Piccoli, L. Cucchiarini, and M. Dacha, Inactivation of rabbit red blood cell hexokinase activity promotedin vitro by an oxygen-radical- generating system,Arch. Biochem. Biophys. 311, 160–167 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. L. Fucci, C. N. Oliver, M. J. Coon, and E. R. Stadtman, Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing,Proc. Natl. Sci. USA 80, 1521–1525 (1983).

    Article  CAS  Google Scholar 

  39. J. Masuoka, J. Hegenauer, B. R. van Dyke, and P. Saltman, Intrinsic stochiometric equilibrium constants for the binding of zinc(II) and copper(II) to the high affinity site of serum albumin.J. Biol. Chem. 268, 21,533–21,537 (1993).

    CAS  Google Scholar 

  40. T. G. Spiro, and P. Saltman, Polynuclear complexes of iron and their biological implications, inStructure and Bonding, vol. 6, P. Hemmerich, C. K. Jorgensen, J. B. Neilands, R. S. Nyholm, D. Reinen, and R. J. P. Williams, eds., Springer-Verlag, New York, pp. 117–156 (1969).

    Google Scholar 

  41. E. Beutler, The preparation of red cells for assay, inRed Cell Metabolism. A Manual of Biochemical Techniques, 3rd ed, Grune & Stratton, Orlando, pp. 8–18 (1984).

    Google Scholar 

  42. E. J. Van Kampen and W. G. Zijlstra, Determination of hemoglobin and its derivatives.Adv. Clin. Chem. 8, 141–187 (1965).

    PubMed  Google Scholar 

  43. C. C. Winterbourn, Oxidative reactions of hemoglobin,Methods Enzymol. 186, 265–272 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. E. Hegesh, N. Gruener, S. Cohen, R. Bochkovsky, and H. I. Shuval, A sensitive micromethod for the determination of methemoglobin in blood,Clin. Chim. Acta 30, 679–682, (1970).

    Article  PubMed  CAS  Google Scholar 

  45. E. Beutler, NADH methemoglobin reductase (NADH-ferricyanide reductase), inRed Cell Metabolism. A Manual of Biochemical Techniques, 3rd ed., Grune & Stratton, Orlando, pp. 82–83 (1984).

    Google Scholar 

  46. P. G. Passon and D. E. Hultquist, Soluble cytochromeb 5 reductase from human erythrocytes,Biochim. Biophys. Acta 275, 62–73 (1972).

    Article  PubMed  CAS  Google Scholar 

  47. D. Gelvan and P. Saltman, Different cellular targets for Cu- and Fe-catalyzed oxidation observed using a Cu-compatible thiobarbituric acid assay.Biochim. Biophys. Acta 1035, 353–360 (1990).

    PubMed  CAS  Google Scholar 

  48. C. A. Rice-Evans, and E. Baysal, Iron-mediated oxidative stress in erythrocytes,Biochem. J. 244, 191–196 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clopton, D.A., Saltman, P. Copper-specific damage in human erythrocytes exposed to oxidative stress. Biol Trace Elem Res 56, 231–240 (1997). https://doi.org/10.1007/BF02785396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785396

Index Entries

Navigation