Skip to main content
Log in

Effects of germanium and silicon on bone mineralization

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The chemical properties of Ge are similar to Si. This study investigated whether Ge can substitute for, or is antagonistic to, Si in bone formation. Sixty male weanling Sprague-Dawley rats were randomly assigned to treatment groups of 12 and 6 in a 2×4 factorially arranged experiment. The independent variables were, per gram fresh diet, Si (as sodium metasilicate) at 0 or 25 μg and Ge (as sodium germanate) at 0, 5, 30 or 60 μg. Results confirmed that Ge does not enhance Si deprivation and provided evidence that Ge apparently can replace Si in functions that influence bone composition. When Si was lacking in the diet, calcium and magnesium concentrations of the femur were decreased; this was reversed by feeding either Ge and/or Si. Similar effects were found for zinc, sodium, iron, manganese, and potassium of vertebra. There were some responses to Si deprivation that Ge could not reverse: Ge did not increase femur copper, sodium, or phosphorus or decrease molybdenum of vertebra, effects that were eveked by Si supplementation. Additionally, some findings suggested that 60 μg Ge/g diet could be a toxic intake for the rat. On the other hand, some responses induced by Ge indicate that this element may be acting physiologically other than as a substitute for Si. Germanium itself affected bone composition. Germanium supplementation decreased Si and molybdenum in the femur and increased DNA in tibia. Regardless of the amount of Si fed, animals fed 30 μg Ge/g diet had increased tibial DNA compared to animals fed 0 or 60 μg Ge; however, tibial DNA of animals fed 30 μg Ge was not statistically different from those animals fed 5 μg Ge. Thus, Ge may be of nutritional importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Schroeder, M. Kanisawa, D. V. Frost, and M. Mitchener,J. Nutr. 96, 37–45 (1968).

    CAS  Google Scholar 

  2. H. A. Schroeder and J. J. Balassa,J. Nutr. 92, 245–252.

  3. P. S. Schein, M. Slavik, T. Smythe, D. Hoth, F. Smith, J. S. Macdonald, and P. V. Woolley,Cancer Treat. Rep. 64, 1051–1056 (1980).

    PubMed  CAS  Google Scholar 

  4. G. Falkson and H. C. Falkson,Cancer Treat. Rep. 67, 189–190 (1983).

    PubMed  CAS  Google Scholar 

  5. F. Suzuki, R. R. Brutkiewicz, and R. B. Pollard,Br. J. Cancer 52, 757–763 (1985).

    PubMed  CAS  Google Scholar 

  6. T. Sanai, S. Okuda, K. Onoyama, N. Oochi, Y. Oh, K. Kobayashi, K. Shimamatsu, S. Fujimi, and M. Fujishima,Nephron. 54, 53–56 (1990).

    PubMed  CAS  Google Scholar 

  7. N. J. Vagelzang, D. H. Gesme, and B. J. Kennedy,Am. J. Clin. Oncol. 8, 341–344 (1985).

    Article  Google Scholar 

  8. T. Matsusaka, M. Fujii, T. Nakano, T. Terai, A. Kurata, M. Imaizumi, and H. Abe,Clin. Nephrol. 30, 341–345 (1988).

    PubMed  CAS  Google Scholar 

  9. K. Okada, K. Okagawa, K. Kawakami, Y. Kuroda, K. Morizumi, H. Sato, H. Morita, S. Shimomura, and S. Saito,Clin. Nephrol. 31, 219–224 (1989).

    PubMed  CAS  Google Scholar 

  10. A. G. Schauss,Biol. Trace Elem. Res. 29, 267–280 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. H. Hachisu,J. Med. Phamaceu. Sci. 9, 1507–1509 (1983).

    Google Scholar 

  12. E. M. Carlisen,Fed. Proc. 33, 1758–1766 (1974).

    Google Scholar 

  13. F. H. Nielsen and B. Bailey,Lab. Anim. Sci. 29, 502–506 (1979).

    PubMed  CAS  Google Scholar 

  14. F. E. Lichte, S. Hopper, and T. W. Osborn,Anal. Chem. 52, 120–124 (1980).

    Article  PubMed  CAS  Google Scholar 

  15. F. H. Nielsen, T. R. Shuler, T. J. Zimmerman, and E. O. Uthus,Biol. Trace Elem. Res. 17, 91–107 (1988).

    PubMed  CAS  Google Scholar 

  16. T. Gurney, Jr. and E. G. Gurney, inMethods in Molecular Biology, vol. 2: Nucleic Acids, Walker, J. M., ed., Humana, Clifton, NJ, pp. 5–11 (1989).

    Google Scholar 

  17. SAS Institute, Inc.,SAS User's Guide: Statistic Version 5 Edition, SAS Institute, Cary, NC (1985).

    Google Scholar 

  18. C. W. Mehard and B. E. Volcani,Bioinorganic Chem. 5, 107–124 (1975).

    Article  CAS  Google Scholar 

  19. A. Furst,Toxicol. Indust. Health 3, 167–204 (1987).

    CAS  Google Scholar 

  20. R. E. Lee,J. Protozool. 25, 163–166 (1978).

    CAS  Google Scholar 

  21. W. M. Darley and B. E. Volcani,Exp. Cell Res. 58, 334–342 (1969).

    Article  PubMed  CAS  Google Scholar 

  22. B. Venugopal and T. D. Luckey,Chemical Toxicity of Metals and Metalloids, Plenum, New York, 1978.

    Google Scholar 

  23. U. Weser,Hoppe-Seylers' Z. Physiol. Chem. 349, 989–994 (1968).

    CAS  Google Scholar 

  24. M. Yamaguchi and M. Uchiyama,Res. Exp. Med. 187, 395–400 (1987).

    Article  CAS  Google Scholar 

  25. E. M. Carlisle,Sci. Tot. Environ. 73, 95–106 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seaborn, C.D., Nielsen, F.H. Effects of germanium and silicon on bone mineralization. Biol Trace Elem Res 42, 151–164 (1994). https://doi.org/10.1007/BF02785386

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785386

Index Entries

Navigation