Skip to main content
Log in

Modeling nonlinear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The clonal growth of 9 seagrass species was modeled using a simulation model based on observed clonal growth rules (i.e., spacer length, rhizome elongation rates, branching rates, branching angle) and shoot mortality rates for seagrass species. The results of the model confirmed the occurrence of complex, nonlinear growth of seagrass clones derived from internal dynamics of space occupation. The modeled clones progressed from a diffuse-limited aggregation (DLA), dendritic growth, identified with a guerrilla strategy of space occupation, to a compact (Eden) growth, comparable to the phalanx strategy of space occupation, once internal recolonization of gaps, left by dead shoots within the clone, begins. The time at which seagrass clones shifted from diffuse limited to compact growth was predictable from the branching angle and frequency of the species and varied from 1 yr to several decades among species. As a consequence the growth behavior and the apparent growth strategy of the species changes with the development of the clones. The results of the model demonstrate that the emergent complexity of seagrass clonal growth is contained within the simple set of growth rules that can be used to represent clonal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bell, A. D. 1979. The hexagonal branching pattern of rhizomes ofAlpinia speciosa L. (Zingiberaceae).Annals of Botany 43:209–223.

    Google Scholar 

  • Bell, A. D. andP. B. Tomlinson. 1980. Adaptive architecture in rhizomatous plants.Biological Journal of Linean Society 80:125–160.

    Article  Google Scholar 

  • Bell, S. S., B. D. Robbins, andS. L. Jensen. 1999. Gap dynamics in a seagrass landscape.Ecosystems 2:493–504.

    Article  Google Scholar 

  • Brouns, J. J. W. M. 1986. Growth patterns in some Indo-West-Pacific seagrasses.Aquatic Botany 28:39–61.

    Article  Google Scholar 

  • Bunde, A. andS. Halvin. 1996. Fractals and Disordered Systems, 1st edition. Springer-Verlag, New York.

    Google Scholar 

  • Callaghan, T. V., B. M. Svensson, H. Bowman, D. K. Lindley, andB. Å. Carlsson. 1990. Models of clonal plant growth based on population dynamics and architecture.Oikos 57:257–269.

    Article  Google Scholar 

  • den Hartog, C. 1970. The seagrasses of the world. North Holland publishing company, Amsterdam, The Netherlands.

    Google Scholar 

  • Duarte, C. M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes.Ophelia 41:87–112.

    Google Scholar 

  • Duarte, C. M., M. A. Hemminga, andN. Marbà. 1996. Growth and population dynamics ofThalassodendron ciliatum.Aquatic Botany 55:1–11.

    Article  Google Scholar 

  • Duarte, C. M. andK. Sand-Jensen. 1990. Seagrass colonization: Patch formation and patch growth inCymodocea nodosa.Marine Ecology Progress Series 65:193–200.

    Article  Google Scholar 

  • Eden, M. 1961. A two dimensional growth process, p. 223–239.In J. Neyman (ed.), 4th Berkeley Symposium on Mathematics, Statistics and Probability, Volume IV: Biology and the Problems of Health. University of California Press, Berkeley, California.

    Google Scholar 

  • Fonseca, M. S., P. E. Withfield, W. J. Kenworthy, D. R. Colby, andB. E. Julius. 2004. Use of two spatially explicit models to determine the effect of injury geometry on natural resource recovery.Aquatic Conservation: Marine and Freshwater Ecosystems 14:1–18.

    Article  Google Scholar 

  • Hemminga, M. A. andC. M. Duarte. 2000. Seagrass Ecology, 1st edition. Cambridge University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Jullien, R. andR. Botet. 1985. Scaling properties of the surface of the Eden model in d-2,3,4.Journal of Physics A 18: 2279–2287.

    Article  Google Scholar 

  • Kendrick, G., J. Eckersley, andD. I. Walker. 1999. Landscapescale changes in seagrass distribution over time: A case study from Success Bank, Western Australia.Aquatic Botany 65:293–309.

    Article  Google Scholar 

  • Lovett-Doust, L. 1981. Population dynamics and local specialization in a clonal perennial (Rannunculus repens). I. The dynamics of ramets in contrasting habitats.Journal of Ecology 69:743–755

    Article  Google Scholar 

  • Marbà, N. andC. M. Duarte. 1998. Rhizome elongation and seagrass clonal growth.Marine Ecology Progress Series 174:269–280.

    Article  Google Scholar 

  • Marbà, N., J. Cebrián, S. Enrquez, andC. M. Duarte. 1994. Migration of large-scale subaqueous bedforms measured using seagrasses (Cymodocea nodosa) as a tracers.Limnology and Oceanography 39:126–133.

    Article  Google Scholar 

  • Marbà, N., C. M. Duarte, J. Cebrián, S. Enriquez, M. E. Gallegos, B. Olesen, andK. Sand-Jensen. 1996. Growth and population dynamics ofPosidonia oceanica in the Spanish Mediterranean coast: Elucidating seagrass decline.Marine Ecology Progress Series 137:203–213.

    Article  Google Scholar 

  • Marbà, N. andD. I. Walker. 1999. Population dynamics of temperate Western Australian seagrasses: Importance of growth and flowering for meadow maintenance.Marine Ecology Progress Series 184:105–118.

    Article  Google Scholar 

  • Molenaar, H., D. Barthélémy, P. de Reffye, A. Meinesz, andI. Mialet. 2000. Modelling architecture and growth patterns ofPosidonia oceanica.Aquatic Botany 66:85–99.

    Article  Google Scholar 

  • Olesen, B. andK. Sand-Jensen. 1994. Demography of shallow eelgrass (Zostera marina) populations: Shoot dynamics and biomass development.Journal of Ecology 82:379–390.

    Article  Google Scholar 

  • Sintes, T., N. Marbà, C. M. Duarte, andG. Kendrick. 2005. Nonlinear processes in seagrass colonisation explained by simple clonal growth rules.Oikos 108:165–175.

    Article  Google Scholar 

  • Stanley, H. F. andN. Ostrowsky. 1986. On Growth and Form, 1st edition. Martinus Nijhoff, Dodrecht, The Netherlands.

    Google Scholar 

  • Tomlinson, P. B. 1974. Vegetative morphology and meristem dependence. The foundation of productivity in seagrasses.Aquaculture 4:107–130.

    Article  Google Scholar 

  • Vermaat, J., N. Agawin, C. M. Duarte, M. D. Fortes, N. Marbà, andJ. Uri. 1995. Meadow maintenance, growth and productivity of a mixed Philippine bed.Marine Ecology Progress Series 124:215–225.

    Article  Google Scholar 

  • Vidondo, B, A. L. Middleboe, K. Stefansen, T. Lützen, S.L. Nielsen, andC. M. Duarte. 1997. Dynamics of a patchy seagrass (Cymodocea nodosa) landscape. Size and age distributions growth and demography of seagrass patches.Marine Ecology Progress Series 158:131–138.

    Article  Google Scholar 

  • Witten, T. A. andL. M. Sander. 1981. Diffusion-limited aggregation, a kinetic critical phenomenon.Physical Review Letters 47:1400–1403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Marbà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sintes, T., Marbà, N. & Duarte, C.M. Modeling nonlinear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora. Estuaries and Coasts: J ERF 29, 72–80 (2006). https://doi.org/10.1007/BF02784700

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784700

Keywords

Navigation