Skip to main content
Log in

Selenoprotein gene expression during selenium-repletion of selenium-deficient rats

  • Accelerated Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium repletion of selenium-deficient rats with 20 μg selenium/kg body weight as Na2SeO3 was used as a model to investigate the mechanisms that control the distribution of the trace element to specific selenoproteins in liver and thyroid. Cytosolic glutathione peroxidase (cGSHPx), phospholipid hydroperoxide glutathione peroxidase (PHGSHPx), and iodothyronine 5′-deiodinase (IDI) activities were all transiently increased in liver 16 to 32 h after ip injection with selenium. However, only cGSHPx and PHGSHPx activities increased in the thyroid where IDI activity was already increased by selenium deficiency. These responses were owing to synthesis of the seleoproteins on newly synthesised and/or existing mRNAs. The selenoprotein mRNAs in the thyroid gland were increased two- and threefold after the transitory increases in selenoprotein activity. In contrast, there were parallel changes in selenoprotein mRNAs and enzyme activities in the liver, with no prolonged rises in mRNA levels. The organ differences suggest that increased thryotrophin (TSH) concentrations, which are known to induce thyrodial IDI and mRNA, may control the mRNAs for all the thyroidal selenoproteins investigated and be a major mechanism for the preservation of thyroidal selenoproteins when selenium supplies are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Sunde, Intracellular glutathione peroxidases—structure regulation and function, inSelenium in Biology and Human Health, R. F. Burk, ed., Springer-Verlag, New York, pp. 45–77 (1994).

    Google Scholar 

  2. J. R. Arthur and G. J. Beckett, New metabolic roles for selenium,Proc. Nut. Soc. 53, 615–624 (1994).

    Article  CAS  Google Scholar 

  3. D. Behne, H. Hilmert, S. Scheid, H. Gessner, and W. Elger, Evidence for specific selenium target tissues and new biologically important selenoproteins,Biocheim. biophys. Acta 966, 12–21 (1988).

    CAS  Google Scholar 

  4. S. A. B. Knight and R. A. Sunde, The effect of progressive selenium deficiency on anti-glutathione peroxidase antibody reactive protein in rat liver,J. Nutr. 117, 732–738 (1987).

    PubMed  CAS  Google Scholar 

  5. R. A. Sunde, Molecular biology of selenoproteins,Ann. Rev. Nutr. 10, 451–474 (1990).

    Article  CAS  Google Scholar 

  6. R. F. Burk, Molecular biology of selenium with implications for its metabolism,FASEB J. 5, 2274–2279 (1991).

    PubMed  CAS  Google Scholar 

  7. G. Bermano, F. Nicol, J. A. Dyer, R. A. Sunde, G. J. Beckett, J. R. Arthur, and J. E. Hesketh, Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats,Biochem. J. 311, 425–430 (1995).

    PubMed  CAS  Google Scholar 

  8. K. E. Hill, P. R. Lyons, and R. F. Burk, Differential regulation of ratliver mRNAs in selenium deficiency,Biochem. Biophys. Res. Commun. 185, 260–263 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. G. J. Beckett, S. E. Beddows, P. C. Morrice, F. Nicol, and J. R. Arthur, Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats,Biochem. J. 248, 443–447 (1987).

    PubMed  CAS  Google Scholar 

  10. I. Chambers, J. Frampton, P. Goldfarb, N. Affara, W. McBain and P. R. Harrison, The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’ codon, TGA,EMBO J. 5, 1221–1227 (1986).

    PubMed  CAS  Google Scholar 

  11. M. J. Berry, L. Banu, and P. R. Larsen, Type I iodothyronine deiodinase is a selenocysteine containing enzyme,Nature 349, 438–440 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. R. A. Sunde, J. A. Dyer, T. V. Moran, J. K. Evenson and M. Sugimoto, Phospholipid hydroperoxide glutathione peroxidase: full-length pig blastocyte cDNA sequence and regulation by selenium status,Biochem. Biophys. Res. Commun. 193, 905–911 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. J. H. Erickson, C. L. Rushford, D. J. Dorney, G. N. Wilson and R. D. Schmickel, Structure and variation of human ribosomal DNA: molecular analysis of cloned fragments,Gene 16, 1–9 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanide-phenol-chloroform extraction,Anal. Biochem. 162, 156–159 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. T. Maniatis, E. F. Fritsch and J. Sambrook,Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982).

    Google Scholar 

  16. J. R. Arthur, P. C. Morrice, F. Nicol, S. E. Beddows, R. Boyd, J. D. Hayes and G. J. Beckett, The effects of selenium and copper deficiencies on glutathione S-transferases and glutathione peroxidase in rat liver,Biochem. J. 248, 539–544 (1987).

    PubMed  CAS  Google Scholar 

  17. F. Weitzel, F. Ursini and A. Wendel, Phospholipid hydroperoxide glutathione peroxidase in various mouse organs during selenium deficiency and repletion,Biochim. Biophys. Acta 1036, 88–94 (1990).

    PubMed  CAS  Google Scholar 

  18. F. Nicol, H. Lefranc, J. R. Arthur and P. Trayhurn, Characterisation of type I deiodinase in goat brown adipose tissue,Am. J. Physiol. 267, R144-R149 (1994).

    PubMed  CAS  Google Scholar 

  19. J. R. Arthur, F. Nicol and G. J. Beckett, Hepatic iodothyronine 5′ deiodinase: the role of selenium,Biochem. J. 272, 537–540 (1990).

    PubMed  CAS  Google Scholar 

  20. J. P. Chanoine, L. E. Braverman, A. P. Farwell, M. Safran, S. Alex, S. Dubord, and J. L. Leonard, The thyroid gland is a major source of circulating T3 in the rat,J. Clin. Invest. 91, 2709–2713 (1993).

    PubMed  CAS  Google Scholar 

  21. M. J. Berry, D. Grieco, B. A. Taylor, A. L. Maia, J. D. Kieffer, W. Bearner, E. Glover, A. Poland, and P. R. Larsen, Physiological and genetic analyses of inbred mouse strains with a type I iodothyronine 5′ deiodinase activity,J. Clin. Invest. 92, 1517–1528 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. N. Toyoda, M. Nishikawa, Y. Mori, A. Gondou, Y. Ogawa, T. Yonemoto, M. Yoshimura, H. Masaki and M. Inada, Thyrotropin and triiodothyronine regulate iodothyronine 5′-deiodinase messenger ribonucleic acid levels in FRTL-5 rat thyroid cells,Endocrinology 131, 389–394 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermano, G., Nicol, F., Dyer, J.A. et al. Selenoprotein gene expression during selenium-repletion of selenium-deficient rats. Biol Trace Elem Res 51, 211–223 (1996). https://doi.org/10.1007/BF02784076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784076

Index Entries

Navigation