Skip to main content
Log in

Study of the age and sex dependence of trace elements in hair by correspondence analysis

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the study was to examine the potential of multidimensional analysis, and in particular of correspondence analysis (CA), in bringing to light the influence of sex and age on trace element (TE) concentrations in hair from an unselected French population. Sixteen elements (S, Hg, Se, Zn, Pb, Cd, Ni, Co, Mn, Fe, Cr, Mg, Al, Ca, Cu, Ag) were assayed by inductively coupled argon plasma (ICAP) emission specrroscopy in the scalp hair of 135 men and 346 women. In spite of the high background noise, CA was able to reveal the differing patterns in males and females. For instance, in this population, higher relative levels of the essential elements, Ca, Mg, Zn, and Cu, but also of Ag, characterized women’s hair, whereas higher relative levels of the heavy metals, Fe and Pb, were associated with men’s hair. Al and Ag were unexplainedly high in the hair of the youngest members of the population. The Cu and Co of youth seemed to give way to a predominance of Zn in maturity. The hair of individuals in their forties tended to be richest in Ca and Mg, but these elements decreased with advancing age. Heavy metals (Hg, Pb, Fe) accumulated with age, whereas Se, Mn, and Cr seemed independent of age. CA is manifestly a very useful tool for revealing underlying dimensions in complex dynamic systems and unsuspected relationships among variables. Clearly, the significance of the high Al and Ag contents in the hair of certain members of the population, especially of the very young, needs to be investigated from both physiological and toxicological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Li, S. Jiang, S. Xu, and J. Shen, Q-type stepwise informational cluster analysis for the elements of silicotics,Jisuanji Yu Yingyong huaxue 12, 285–288 (1995).

    CAS  Google Scholar 

  2. M. W. Tsang, H. S. Lau, and P. L. Leung, Trace element study by use of X-ray fluorescence spectrometry in Chinese diabetes patients,Int. Congr. Ser. 1100 (Diabetes 1994) 1125–1127 (1995).

  3. Y. Sha, P. Lin, P. Zhang, Y. Dong, Z. Yang, Y. Wu, J. Li, D. Liu, Y. Wang, and D. Zhang, Diagnostic significance of elements in hair of people with esophageal cancer by computerized pattern recognition and PIXE,Hejishu 17, 164–167 (1994).

    CAS  Google Scholar 

  4. C. K. Man, Y. H. Zheng, and P. K. Mak, Trace element profiles in the hair of nasopharyngeal carcinoma (NPC) patients,J. Radioanal. Nucl. Chem. 212, 151–160 (1996).

    Article  CAS  Google Scholar 

  5. I. Shtangeeva and V. Kulikov, Study of chemical element behavior in health and disease by means of neutron activation analysis and multivariate statistics,Nutrition (Suppl.) 11, 592–594 (1995).

    CAS  Google Scholar 

  6. A. Sonneville and F. Poirier-Duchêne. Les hypersensibilités non spécifiques par instabilité membranaire des cellules cibles ont-elles pour support un déséquilibre en oligoéléments?Allergie Immunol. 22, no. 1 (1990).

    Google Scholar 

  7. A. Chatt and S. A. Katz,Hair Analysis: Applications in the Biomedical and Environmental Sciences, VCH, New York (1988).

    Google Scholar 

  8. V. A. Batzevich, Hair trace element analysis in human ecology studies,Sci. Total Environ. 164, 89–98 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. R. E. Jervis, B. T. Kua, and G. Hercz, Trace elements in kidney dialysis patients by INAA,Biol. Trace Element Res. 43-45, 335–342 (1994).

    CAS  Google Scholar 

  10. J. P. Benzécri,L’Analyse des Données. Tome I: La Taxinomie. Tome II: L’Analyse des Correspondances, 1st ed., Bordas/Dunod, Paris (1973).

    Google Scholar 

  11. M. J. Greenacre,Theory and Applications of Correspondence Analysis, Academic, New York (1984).

    Google Scholar 

  12. L. G. Underhill and M. Peisach, Correspondence analysis and its application in multielemental trace analysis,J. Trace Microprobe Techn. 3, 41–65 (1985).

    CAS  Google Scholar 

  13. M. Jambu,Exploratory and Multivariate Data Analysis, Academic, New York (1991).

    Google Scholar 

  14. J. C. Doré and T. Ojasoo, Molecular taxonomy by correspondence factorial analysis (CFA), inAdvanced Computer-Assisted Techniques in Drug Discovery, vol. 3,Methods and Principles in Medicinal Chemistry, H. van de Waterbeemd, ed., VCH, Weinheim, pp. 190–227 (1994).

    Google Scholar 

  15. J. Blasius and M. J. Greenacre, eds.,Visualization of Categorical Data, Academic, New York, in press.

  16. G. Sandor, P. Lenoir, and M. Kerbaol, Une étude en ordinateur des corrélations entre les modifications des protéines sériques en pathologie humaine,C. R. Acad. Sci.: Paris 272, 331–334 (1971).

    CAS  Google Scholar 

  17. J. C. Doré, J. Lacroix, R. Lacroix, and T. Etienne, Multivariate analysis of clinical chemistry standard profiles and biological typing of a psychotic population,J. Pharm. Clin. 10, 257–263 (1991).

    Google Scholar 

  18. T. Ojasoo, J. Fiet, J. P. Raynaud, and J. C. Doré, A multivariate approach to the description of patient populations—Example of the analysis of the hormone profiles of patients with advanced prostate cancer,J. Steroid Biochem. Mol. Biol. 46, 183–193 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. C. Lugnier, J. C. Doré, and C. Viel, Inhibition of cyclic nucleotide phosphodiesterases from bovine aorta by papaverine analogues: a multivariate approach.Eur. J. Med. Chem. 29, 723–734 (1994).

    Article  CAS  Google Scholar 

  20. J. Gilbert, J. C. Doré, E. Bignon, M. Pons, and T. Ojasoo, Study of the effects of basic diand tri-phenyl derivatives on malignant cell proliferation. An example of the application of correspondence factor analysis to structure-activity relationships,Quant. Struct. Act. Rel. 13, 262–274 (1994).

    CAS  Google Scholar 

  21. T. Ojasoo, J. P. Raynaud, and J. C. Doré, Correspondence factor analysis of steroid libraries,Steroids 60, 458–469 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. I. P. de A. Miranda, V. Fortin, J. C. Doré, L. Derouet, F. Poirier, M. C. Carbonnier-Jarreau, M. L. Absy, M. T. Cerceau-Larrival, and C. Viel, Analyse multiparamétrique de la composition minérale des pollens d’une population deBactris gasipaes (Arecaceae),Grana 34, 434–440 (1995).

    Article  Google Scholar 

  23. S. B. Deeming and C. W. Weber, Hair analysis of trace minerals in human subjects as influenced by age, sex, and contraceptive drugs,Am. J. Clin. Nutr. 31, 1175–1180 (1978).

    PubMed  CAS  Google Scholar 

  24. G. F. Gordon, Sex and age related differences in trace element concentrations in hair,Sci. Total Environ. 42, 133–147 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. E. S. Di Pietro, D. L. Phillips, D. C. Paschal, and J. W. Neese, Determination of trace elements in human hair,Biol. Trace Element Res. 22, 83–100 (1989).

    Article  Google Scholar 

  26. D. C. Paschal, E. S. Di Pietro, D. L. Phillips, and E. W. Gunter, Age dependence of metals in hair in a selected U.S. population,Environ. Res. 48, 17–28 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. M. Schumacher, J. L. Domingo, J. M. Llobet, J. Corbella, and J. B. Marti, Chromium, copper, and zinc concentrations in hair of school children from Southern Catalonia Spain,Trace Elements Med. 10, 21–26 (1993).

    Google Scholar 

  28. L. Perrone, R. Moro, M. Caroli, R. di Toro, and G. Gialanella, Trace elements in hair of healthy children sampled by age and sex,Biol. Trace Element Res. 51, 71–76 (1996).

    CAS  Google Scholar 

  29. J. C. Gower and G. J. S. Ross, Minimum spanning trees and single linkage cluster analysis,Appl. Stat. 18, 54–64 (1969).

    Article  Google Scholar 

  30. G. N. Lance and W. T. Williams, Computer programs for hierarchical polythetic classification (“similarity analyses”),Computer J. 9, 60–64 (1966).

    Google Scholar 

  31. R. C. Prim, Shortest connection networks and some generalisations,Bell Syst. Technol. J. 36, 1389–1401 (1957).

    Google Scholar 

  32. G. V. Iyengar and J. Woittiez, Trace elements in human clinical specimens: evaluation of literature data to identify reference values.Clin. Chem. 34, 474–481 (1988).

    PubMed  CAS  Google Scholar 

  33. L. Guttman, The principal components of scale analysis, inMeasurement and Prediction, S. A. Stouffer et al., eds., University Press, Princeton (1950).

    Google Scholar 

  34. H. Ozkaynak, J. Xue, J. Spengler, L. Wallace, E. Pellizzari, and P. Jenkins, Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California.J. Expo. Anal. Environ. Epidemiol. 6, 57–78 (1996).

    PubMed  CAS  Google Scholar 

  35. T. P. Flaten, A. C. Alfrey, J. D. Birchall, J. Savory, and R. A. Yokel, Status and future concerns of clinical and environmental aluminum toxicology.J. Toxicol. Environ. Health,48, 527–541 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. J. L. Domingo, J. Llorens, D. J. Sanchez, M. Gomez, J. M. Llobet, and J. Corbella, Agerelated effects of aluminum ingestion on brain aluminum accumulation and behavior in rats.Life Sci. 58, 1387–1395 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakrgynska-Fontaine, V., Doré, JC., Ojasoo, T. et al. Study of the age and sex dependence of trace elements in hair by correspondence analysis. Biol Trace Elem Res 61, 151–168 (1998). https://doi.org/10.1007/BF02784027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784027

Index entries

Navigation