Skip to main content
Log in

Wind-driven sediment suspension controls light availability in a shallow coastal lagoon

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Light availability is critically important for primary productivity in coastal systems, yet current research approaches may not be adequate in shallow coastal lagoons. Light attenuation in these systems is typically dominated by suspended sediment, while light attenuation in deeper estuaries is often dominated by phytoplankton. This difference in controls on light attenuation suggests that physical processes may exert a greater influence on light availability in coastal lagoons than in deeper estuaries. Light availability in Hog Island Bay, a shallow coastal lagoon on the eastern shore of Virginia, was determined for a summer and late fall time period with different wind conditions. We combined field measurements and a process-based modeling approach that predicts sediment suspension and light availability from waves and currents to examine both the variability and drivers of light attenuation. Total suspended solids was the only significant predictor of light attenuation in Hog Island Bay. Waves and currents in Hog Island Bay responded strongly to wind forcing, with bottom stresses from wind driven waves dominant for 60% of the modeled area for the late fall period and 24% of the modeled area for the summer period. Higher wind speeds in late fall than in summer caused greater sediment suspension (41 and 3 mg l−1 average, respectively) and lower average (spatial and temporal) downwelling light availability (32% and 55%, respectively). Because of the episodic nature of wind events and the spatially variable nature of sediment suspension, conventional methods of examining light availability, such as fair-weather monitoring or single in situ recorders, do not adequately represent light conditions for benthic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Arfi, R., D. Guiral, andM. Bouvy. 1993. Wind induced resuspension in a shallow tropical lagoon.Estuarine Coastal and Shelf Science 36:587–604.

    Article  CAS  Google Scholar 

  • Baker, E. T. andJ. W. Lavelle. 1984. The effect of particle size on the light attenuation coefficient of natural suspensions.Journal of Geophysical Research 89:8197–8203.

    Article  Google Scholar 

  • Betteridge, K. F. E., P. D. Thorne, andP. S. Bell. 2002. Assessment of acoustic coherent Doppler and cross-correlation techniques for measuring near-bed velocity and suspended sediment profiles in the marine environment.Journal of Atmospheric and Oceanic Technology 19:367–380.

    Google Scholar 

  • Blom, G., E. H. S. Van Duin, R. H. Aalderink, L. Lijklema, andC. Toet. 1992. Modeling sediment transport in shallow lakes—Interactions between sediment transport and sediment composition.Hydrobiologia 235:153–166.

    Article  Google Scholar 

  • Blom, G., E. H. S. Van Duin, andL. Lijklema. 1994. Sediment resuspension and light conditions in some shallow Dutch lakes.Water Science and Technology 30:243–252.

    Google Scholar 

  • Booij, N., R. C. Ris, andL. H. Holthuijsen. 1999. A third-generation wave model for coastal regions—1. Model description and validation.Journal of Geophysical Research 104:7649–7666.

    Article  Google Scholar 

  • Cerco, C. F. andT. Cole. 1993. 3-dimensional eutrophication model of Chesapeake Bay.Journal of Environmental Engineering-ASCE 119:1006–1025.

    Article  CAS  Google Scholar 

  • Cerco, C. F. andT. M. Cole. 1994. Three-dimensional eutrophication model of Chesapeake Bay; Volume I, Main report. Technical report EL-94-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • Christian, D. andY. P. Sheng. 2003. Relative influence of various water quality parameters on light attenuation in Indian River Lagoon.Estuarine Coastal and Shelf Science 57:961–971.

    Article  CAS  Google Scholar 

  • Christiansen, T., P. L. Wiberg, andT. G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface.Estuarine Coastal and Shelf Science 50:315–331.

    Article  Google Scholar 

  • Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210:223–253.

    Article  CAS  Google Scholar 

  • Dietrich, W. E. 1982. Settling velocity of natural particles.Water Resources Research 18:1615–1626.

    Article  Google Scholar 

  • Duarte, C. M. 1991. Seagrass depth limits.Aquatic Botany 7:139–150.

    Google Scholar 

  • Eisma, D. 1986. Flocculation and de-flocculation of suspended matter in estuaries.Netherlands Journal of Sea Research 20:183–199.

    Article  Google Scholar 

  • Fugate, D. C., C. T. Friedrichs, and A. Bilgili. 2006. Estimation of residence time in a shallow back barrier lagoon, Hog Island Bay, Virginia, USA, p. 319–337.In M. Spaulding (ed.), Proceedings of the 9th International Conference on Estuarine and Coastal Modeling. ASCE, Reston, Virginia.

  • Gallegos, C. L. 1994. Refining habitat requirements of submersed aquatic vegetation-role of optical models.Estuaries 17: 187–199.

    Article  Google Scholar 

  • Gallegos, C. L. 2001. Calculating optical water quality targets to restore and protect submersed aquatic vegetation: Overcoming problems in partitioning the diffuse attenuation coefficient for photosynthetically active radiation.Estuaries 24:381–397.

    Article  CAS  Google Scholar 

  • Gallegos, C. L. andW. J. Kenworthy. 1996. Seagrass depth limits in the Indian River Lagoon (Florida, U.S.A.): Application of an optical water quality model.Estuarine Coastal and Shelf Science 42: 267–288.

    Article  Google Scholar 

  • Glenn, S. M. andW. D. Grant. 1987. A suspended sediment stratification correction for combined wave and current flows.Journal of Geophysical Research-Oceans 92:8244–8264.

    Article  Google Scholar 

  • Gordon, H. R. 1989. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?Limnology and Oceanography 34:1389–1409.

    Article  Google Scholar 

  • Harris, C. K. andP. L. Wiberg. 1997. Approaches to quantifying long-term continental shelf sediment transport with an example from the Northern California STRESS mid-shelf site.Continental Shelf Research 17:1389–1418.

    Article  Google Scholar 

  • Harris, C. K. andP. L. Wiberg. 2001. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves.Computers and Geosciences 27: 675–690.

    Article  Google Scholar 

  • Hill, P. S. 1998. Controls on floc size in the coastal ocean.Oceanography 11:13–18.

    Google Scholar 

  • Holdaway, G. P., P. D. Thorne, D. Flatt, S. E. Jones, andD. Prandle. 1999. Comparison between ADCP and transmissometer measurements of suspended sediment concentration.Continental Shelf Research 19:421–441.

    Article  Google Scholar 

  • Hornberger, G. M., J. P. Raffensperger, P. L. Wiberg, andK. Eshleman. 1998. Elements of Physical Hydrology. Johns Hopkins Press, Baltimore, Maryland.

    Google Scholar 

  • Ip, J. T. C., D. R. Lynch, andC. T. Friedrichs. 1998. Simulation of estuarine flooding and dewatering with application to Great Bay, New Hampshire.Estuarine Coastal and Shelf Science 47:119–141.

    Article  Google Scholar 

  • Kenworthy, W. J. andM. S. Fonseca. 1996. Light requirements of seagrassesHalodule wrightii andSyringodium filiforme derived from the relationship between diffuse light attenuation and maximum depth distribution.Estuaries 19:740–750.

    Article  Google Scholar 

  • Lawson, S. E. 2004. Sediment suspension controls light availability in a shallow coastal lagoon. M.S. Thesis. University of Virginia, Charlottesville, Virginia.

    Google Scholar 

  • Le Hir, P., W. Roberts, O. Cazaillet, M. C. Christie, P. Bassoullet, andC. Bacher. 2000. Characterization of intertidal flat hydrodynamics.Continental Shelf Research 20:1433–1459.

    Article  Google Scholar 

  • Lorenzen, C. J. 1972. Extinction of light in the ocean by phytoplankton.Journal Du Conseil 34:262–267.

    Google Scholar 

  • Lund-Hansen, L. C., M. Peterson, andW. Nurjaya. 1999. Vertical sediment fluxes and wave-induced sediment resuspension in a shallow water coastal lagoon.Estuaries 22:39–46.

    Article  Google Scholar 

  • Manning, A. J. andK. R. Dyer. 2002. The use of optics for the in situ determination of flocculated mud characteristics.Journal of Optics A-Pure and Applied Optics 4:S71-S81.

    Article  Google Scholar 

  • McGlathery, K. J., I. C. Anderson, andA. C. Tyler. 2001. Magnitude and variability of benthic and pelagic metabolism in a temperate coastal lagoon.Marine Ecology Progress Series 216:1–15.

    Article  CAS  Google Scholar 

  • Moore, K. A. andR. L. Wetzel. 2000. Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems.Journal of Experimental Marine Biology and Ecology 244: 1–28.

    Article  CAS  Google Scholar 

  • Oertel, G., C. R. Carlson, and K. Overman. 2000. Hog Island Bay, Virginia Bathymetric Survey using Trimble DGPS and Innerspace Digital Fathometer. Available online: http:// www.vcrlter.virginia.edu/∼crc7m/hogbay/hogbay.html.

  • Oertel, G. F. 2001. Hypsographic, hydro-hypsographic and hydrological analysis of coastal bay environments, Great Machipongo Bay.Journal of Coastal Research 17:775–783.

    Google Scholar 

  • Olesen, B. 1996. Regulation of light attenuation and eelgrassZostera marina depth distribution in a Danish embayment.Marine Ecology Progress Series 134:187–194.

    Article  Google Scholar 

  • Orth, R. J., M. L. Luckenbach, S. R. Marion, K. A. Moore, andD. J. Wilcox. 2006. Seagrass recovery in the Delmarva coastal bays.Aquatic Botany 84:26–36.

    Article  Google Scholar 

  • Ris, R. C., L. H. Holthuijsen, andN. Booij. 1999. A third-generation wave model for coastal regions—2. Verification.Journal of Geophysical Research-Oceans 104:7667–7681.

    Article  Google Scholar 

  • Rouse, H. 1937. Modern conceptions of the mechanics of fluid turbulence. Transactions of ASCE. Volume 102, Paper No. 1965. New York.

  • Sand-Jensen, K. andJ. Borum. 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate fresh-waters and estuaries.Aquatic Botany 41:137–175.

    Article  Google Scholar 

  • Smith, J. D. andS. R. McLean. 1977. Spatially averaged flow over a wavy surface.Journal of Geophysical Research 82:1735–1746.

    Article  Google Scholar 

  • Soulsby, R. L. 1997. Dynamics of Marine Sands. Thomas Telford, London, England.

    Google Scholar 

  • Sternberg, R. W., I. Berhane, andA. S. Ogston. 1999. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf.Marine Geology 154:43–53.

    Article  Google Scholar 

  • Van Duin, E. H. S., G. Blom, L. Lijklema, andM. J. M. Scholten. 1992. Aspects of modeling sediment transport and light conditions in Lake Marken.Hydrobiologia 235:167–176.

    Article  Google Scholar 

  • Van Duin, E. H. S., G. Blom, F. J. Los, R. Maffione, R. Zimmerman, C. F. Cerco, M. Dortch, andE. P. H. Best. 2001. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth.Hydrobiologia 444:25–42.

    Article  Google Scholar 

  • Wiberg, P. andJ. D. Smith. 1983. A comparison of field data and theoretical models for wave current interactions at the bed on the continental shelf.Continental Shelf Research 2:147–162.

    Article  Google Scholar 

  • Wiberg, P. L., D. E. Drake, andD. A. Cacchione. 1994. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf-measurements and predictions.Continental Shelf Research 14: 1191–1219.

    Article  Google Scholar 

  • Zharova, N., A. Sfriso, A. Voinov, andB. Pavoni. 2001. A simulation model for the annual fluctuation ofZostera marina biomass in the Venice lagoon.Aquatic Botany 70:135–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Lawson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawson, S.E., Wiberg, P.L., McGlathery, K.J. et al. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuaries and Coasts: J ERF 30, 102–112 (2007). https://doi.org/10.1007/BF02782971

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02782971

Keywords

Navigation