Skip to main content
Log in

Controls on herbaceous litter decomposition in the estuarine ecotones of the Florida Everglades

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The effects of nutrient availability and litter quality on litter decomposition were measured in two oligotrophic phosphorus (P)-limited Florida Everglades esturies, United States. The two estuaries differ, in that one (Shark River estuary) is directly connected to the Gulf of Mexico and receives marine P, while the other (Taylor Slough estuary) does not receive marine P because Florida Bay separates it from the Gulf of Mexico. Decomposition of three macrophytes.Cladium jamaicense, Eleochaaris spp., andJuncus roemerianus, was studied using a litter bag technique over 18 mo. Litter was exposed to three treatments: soil surface+macroinvertebrates (=macro), soil surface without macroinvertebrates (=wet), and above the soil and water (=aerial). The third treatment replicated the decomposition of standing dead leaves. Decomposition rates showed that litter exposed to the wet and macro treatments decomposed significantly faster than the aerial treatment, where atmospheric deposition was the only source of nutrients. Macroinvertebrates had no influence on litter decompostion rates.C. jamaicense decomposed faster at sites, with higher P, andEleocharis spp. decomposed significantly faster at sites with higher nitrogen (N). Initial tissue C:N and C:P molar ratios revealed that the nutrient quality of litter of bothEleocharis spp. andJ. roemerianus was higher thanC. jamaicense, but onlyEleocharis spp. decomposed faster thanC. jamaicense. C. jamaicense litter tended to immobilize P, whileEleocharis spp. litter showed net remineralization of N and P. A comparison with other estuarine and wetland systems revealed the dependence of litter decomposition on nutrient availability and litter quality. The results from this experiment suggest that Everglades restoration may have an important effect on key ecosystem processes in the estuarine ecotone of this landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aber, J. andJ. Melillo. 1982. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content.Canadian Journal of Botany 60:2263–2269.

    CAS  Google Scholar 

  • Amador, J. A., H. Richany, andR. D. Jones. 1992. Factors affecting phosphate uptake by peat soils of the Florida Everglades.Soil Science 153:463–470.

    Article  CAS  Google Scholar 

  • Bianchi, T. S. andS. Findlay. 1991. Decomposition of Hudson estuary macrophytes: Photosynthetic pigment transformations and decay constants.Estuaries 14:65–73.

    Article  CAS  Google Scholar 

  • Bradford, M. A., G. M. Tordoff, T. Eggers, T. H. Jones, andJ. E. Newington. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition.OIKOS 99:317–323.

    Article  Google Scholar 

  • Brezonik, P. L. andC. D. Pollman. 1999. Phosphorus chemistry and cycling in Florida lakes: Global issues and local perspectives. p. 69–110.In K. R. Reddy, G. A. O'Connor, and C. L. Schelske (eds.). Phosphorus Biogeochemistry in Subtropical Ecosystems. Lewis Publishers. Boca Raton, Florida.

    Google Scholar 

  • Brinson, M. M., A. E. Lugo, andS Brown. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands.Annual Review of Ecology and Systematics 12:123–161.

    Article  Google Scholar 

  • Childers, D. L., J. N. Boyer, S. E. Davis, C. J. Madden, D. T. Rudnick, andF. H. Sklar. 2006. Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside down” estuaries of the Florida Everglades.Limnology and Oceanography 51:602–616.

    CAS  Google Scholar 

  • Childers, D. L., R. F. Doren, R. Jones, G. B. Noe, M. Rugge, andL. J. Scinto. 2003. Decadal change in vegetation and soil phosphorus patterns across the Everglades landscape.Journal of Environmental Quality 32:344–362.

    Article  CAS  Google Scholar 

  • Christian, R. R., W. L. Bryant, Jr., andM. M. Brinson. 1990.Juncus roemerianus production and decomposition along gradients of salinity and hydroperiod.Marine Ecology Progress Series 68: 137–145.

    Article  Google Scholar 

  • Daoust, R. J. andD. L. Childers. 1999. Controls of emergent macrophyte composition, abundance, and productivity in freshwater Everglades wetland communities.Wetlands 19:262–275.

    Google Scholar 

  • Davis, S. M. 1991. Growth, decomposition and nutrient retention ofCladium jamaicense Crantz andTypha domingensis Pers. in the Florida Everglades.Aquatic Botany 40:203–224.

    Article  Google Scholar 

  • Davis, S. E., C. Coronado-Molina, D. L. Childers, andJ. W. Day. 2003. Temporally dependent C, N, and P dynamics associated with the decay ofRhizophora mangle leaf litter in an oligotrophic south Florida estuary.Aquatic Botany 75:199–215.

    Article  CAS  Google Scholar 

  • Davis, S. M. andJ. C. Ogden. 1994. Everglades: The Ecosystem and its restoration. St. Lucie Press, Delray Beach, Florida.

    Google Scholar 

  • Davis, C. B. andA. G. van der Valk. 1978. The decomposition of standing and fallen litter ofTypha glauca andScirpus fluviatilis.Canadian Journal of Botany 56:662–675.

    Article  CAS  Google Scholar 

  • DeAngelis, D. 1994. Synthesis: Spatial, and temporal characteristics of the environment, p. 307–320.In S. M. Davis and J. C. Ogden (eds.) Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, Florida.

    Google Scholar 

  • DeBusk, W. F. andK. R. Reddy. 1998. Turnover of detrital organic carbon in a nutrient-impacted Everglades marsh.Soil Science Society of America Journal 62:1460–1468.

    Article  CAS  Google Scholar 

  • De la Cruz, A. A. andB. C. Gabriel. 1974. Caloric, elemental, and nutritive changes in decomposingJuncus roemerianus leaves.Ecology 55:882–886.

    Article  Google Scholar 

  • Fourqurean, J. W., J. C. Zieman, andG. V. N. Powell. 1992. Phosphorus limitation of primary production in Florida Bay: Evidence from C:N:P ratios of the dominant seagrassThalassia testudinum.Limnology and Oceanography 37:162–171.

    CAS  Google Scholar 

  • Gaiser, E. E., L. J. Scinto, J. H. Richards, K. Jayachandran, D. L. Childers, J. C. Trexler, andR. D. Jones. 2004. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland.Water Research 38:507–516.

    Article  CAS  Google Scholar 

  • Gallacher, J. L. 1978. Decomposition process: Summary and recommendations, p. 145–151.In R. E. Good, D. F. Whigham, and R. L. Simpson (eds.) Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York.

    Google Scholar 

  • Jackson, D., S. P. Long, andC. F. Mason. 1986. Net primary production, decomposition and export ofSpartina anglica on a Suffolk salt-marsh.Journal of Ecology 74:647–662.

    Article  Google Scholar 

  • Kaushik, N. K. andH. B. N. Hynes. 1971. Experimental study on the role of autumn shed leaves in aquatic environments.Journal of Ecology 56:229–245.

    Google Scholar 

  • Koch, M. S. andK. R. Reddy. 1992. Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades.Soil Science Society of America Journal 56:1492–1499.

    Article  Google Scholar 

  • Lillebo, A. I., R. F. Mogens, M. A. Pardal, andJ. C. Marques. 1999. The effects of macrofauna and meiofauna on the degradation ofSpartina maritima detritus from a salt marsh area.Acta Oecologica 20:249–258.

    Article  Google Scholar 

  • McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith, andF. H. Sklar. 1996. Periphyton water quality relationships along a nutrient gradient in the northern Florida Everglades.Journal of the North American Benthological Society 48:433–449.

    Article  Google Scholar 

  • Mitsch, W. J. andJ. G. Gosselink. 2000. Inland wetland ecosystems: Freshwater marshes, p. 337–419.In W. J. Mitsch and J. G. Gosselink (eds.), Wetlands, 3rd edition. John Wiley and Sons, New York.

    Google Scholar 

  • Nelson, J. W., J. A. Kadlec, andH. R. Murkin. 1990. Response by macroinvertebrates to cattail litter quality and timing of litter submergence in a northern prairie marsh.Wetlands 10:47–60.

    Google Scholar 

  • Newman, S., H. Kumpf, J. A. Laing, andW. C. Kennedy. 2001. Decomposition responses to phosphorus enrichment in an Everglades (Unites States of America) slough.Biogeochemistry 54:229–250.

    Article  CAS  Google Scholar 

  • Noe, G. B., D. L. Childers, andR. D. Jones. 2001. Phosphorus biogeochemistry and the impact of P enrichment: Why is the Everglades so unique?Ecosystems 4:603–624.

    Article  CAS  Google Scholar 

  • Qualls, R. G. andC. J. Richardson. 2000. Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms.Soil Science Society of America Journal 64:799–808.

    Article  CAS  Google Scholar 

  • Qualls, R. G. andC. J. Richardson. 2002. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida.Biogeochemistry 62:197–229.

    Article  Google Scholar 

  • Rader, R. B. andC. J. Richardson. 1992. The effects of nutrient enrichment on algae and macroinvertebrates in the Everglades.Wetlands 12:121–135.

    Article  Google Scholar 

  • Rejmánková, E. 2001. Effects of experimental phosphorus enrichment on oligotrophic tropical marshes in Belize, Central America.Plant and Soil 236:33–53.

    Article  Google Scholar 

  • Richardson, C. J., G. M. Ferrell, andP. Vaithiyanathan. 1999. Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass.Ecology 80:2182–2192.

    Google Scholar 

  • Rubio, G. 2003. Macrophyte decomposition and litter dynamics in the Everglades ecotones. M.S. Thesis, Florida International University, Miami, Florida.

    Google Scholar 

  • Rybcyk, J. M., G. Garson, andJ. W. Day, Jr. 1996. Nutrient enrichment and decomposition in wetland ecosystems: Models, analyses and effects.Current Topics in Wetland Biogeochemistry 2: 52–72.

    Google Scholar 

  • SASInstitute. 2000. SAS/STAT User's Guide, Version 8. SAS Institute, Inc., Cary, North Carolina.

    Google Scholar 

  • Sharp, L. andJ. H. Solorzano. 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters.Limnology and Oceanography 25:754–758.

    Google Scholar 

  • Sutula, M., J. Day, J. Cable, andD. Rudnick. 2001. Hydrological and nutrient budgets of freshwater and estuarine wetlands of Taylor Slough in southern Everglades, Florida (United States of America).Biogeochemistry 56:287–310.

    Article  Google Scholar 

  • Twilley, R. R., G. Ejdung, P. Romare, andW. M. Kemp. 1986. A comparative study of decomposition, oxygen consumption, and nutrient release for selected aquatic plants occurring in an estuarine environment.OIKOS 47:190–198.

    Article  CAS  Google Scholar 

  • van Dam, D., G. W. Heil, andB. Heijne. 1987. Throughfall chemistry of grassland vegetation: A new method with ion-exchange resins.Functional Ecology 1:423–427.

    Article  Google Scholar 

  • Villar, C. A., L. de Cabo, P. Vaithiyanathan, andC. Bonetto. 2001. Litter decomposition of emergent macrophytes in a floodplain marsh of the lower Paraná River.Aquatic Botany 70:105–116.

    Article  Google Scholar 

  • Warren, R. S., P. E. Fell, J. L. Grimsby, E. L. Buck, G. C. Rilling, andR. A. Fertik. 2001. Rates, patterns, and impacts ofPhragmites australis expansion and effects of experimentalPhragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River.Estuaries 24:90–107.

    Article  Google Scholar 

  • Webster, J. R. andE. F. Benfield. 1986. Vascular plant breakdown in freshwater ecosystems.Annual Review of Ecology and Systematics 17:567–594.

    Article  Google Scholar 

  • White, P. S. 1994. Synthesis: Vegetation pattern and process in the Everglades ecosystem, p. 445–460.In S. M. Davis and J. C. Ogden (eds.), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, Florida.

    Google Scholar 

  • Zar, J. H. 1998. Comparing simple linear regression equations, p. 360–376.In J. H. Zar. (ed.), Biostatistical Analysis, 4th edition. Prentice Hall, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio, G., Childers, D.L. Controls on herbaceous litter decomposition in the estuarine ecotones of the Florida Everglades. Estuaries and Coasts: J ERF 29, 257–268 (2006). https://doi.org/10.1007/BF02781994

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02781994

Keywords

Navigation