Skip to main content
Log in

Novel oligodendrocyte transmembrane signaling systems

Investigations utilizing antibodies as ligands

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Antibodies are increasingly being used as tools to study the function of cell surface markers. Several types of responses may occur upon the selective binding of an antibody to an epitope on a receptor. Antibody binding may trigger signals that are normally transduced by endogenous ligands. Moreover, antibody binding may activate normal signals in a manner that disrupts a sequence of events that coordinates either differentiation, mitogenesis, or morphogenesis. Alternately, it is possible that binding elicits either a modified signal or no signal. This article focuses on the cascade of events that occur following specific antibody binding to myelin markers expressed by cultured murine oligodendrocytes. Binding of specific antibodies to the oligodendrocyte membrane surface markers myelin/oligodendrocyte glycoprotein (MOG), myelin/oligodendrocyte specific protein (MOSP), galactocerebroside (GalC), and sulfatide on cultured murine oligodendrocytes results in different effects with regard to phospholipid turnover, Ca2+ influxes, and antibody:marker distribution. The consequence of each antibody-elicited cascade of events appears to be the regulation of the cytoskeleton within the oligodendroglial membrane sheets. The antibody binding studies described in this article demonstrate that these myelin surface markers are capable of transducing signals. Since endogenous ligands for these myelin markers have yet to be identified, it is not known if these signals are normally transduced or are a modification of normally transduced signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiguet P., Gardinier M. V., Zanetta J. P., and Matthieu, J. M. (1991) Purification and partial structural and functional characterization of mouse myelin/oligodendrocyte glycoprotein.J. Neurochem. 58, 1676–1682.

    Article  Google Scholar 

  • Ash J. F. and Singer S. J. (1976) Concanavalin-A-induced transmembrane linkage of concanavalin-A receptors to intracellular myosin-containing filaments.J. Cell Biol. 73, 4575–4579.

    CAS  Google Scholar 

  • Ash J. F., Louvard D., and Singer S. J. (1977) Antibody-induced linkages of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts.J. Cell Biol. 74, 5584–5588.

    CAS  Google Scholar 

  • Bansal R., Stefansson K., and Pfeiffer S. E. (1992) Proligodendroblast antigen (POA), a developmental antigen expressed by A007/04-positive oligodendrocyte progenitors prior to appearance of sulfatide and galactocerebroside.J. Neurochem. 58: 2221–2229.

    Article  PubMed  CAS  Google Scholar 

  • Bansal R. and Pfeiffer S. E. (1989) Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids.Proc. Natl. Acad. Sci. USA 86, 6181–6185.

    Article  PubMed  CAS  Google Scholar 

  • Bansal R., Warrington A. E., Gard A. L., Ranscht B., and Pfeiffer S. E. (1989) Multiple and novel specificities of monoclonal antibodies 01, 04, and mAb used in the analysis of oligodendrocyte development.J. Neurosci. Res. 58, 2221–2229.

    Google Scholar 

  • Barbarese E., Carson J. H., and Braun P. E. (1978) Accumulation of the four basic proteins in mouse brain during development.J. Neurochem. 31, 779–782.

    Article  PubMed  CAS  Google Scholar 

  • Barres B. A., Chun L. L. Y., and Corey D. P. (1988) Ion channel expression by white matter glia: type 2 saturates and oligodendrocytes.Glia 1, 10–30.

    Article  PubMed  CAS  Google Scholar 

  • Bologa L. (1985) Oligodendrocytes, key cells in myelination and target in desalinating diseases.J. Neurosci. Res. 14, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Bornstein M. B. and Raine C. S. (1970) Experimental allergic encephalomyelitis antiserum inhibition of myelination in vitro.Lab. Invest. 23, 536–542.

    PubMed  CAS  Google Scholar 

  • Bornstein M. B. and Appel S. H. (1961) The application of tissue culture to the study of experimental allergic encephalomyelitis. I. Pattern of desalination.J. Neuropath. Exp. Neurol. 20, 141–157.

    Google Scholar 

  • Bourguignon L. Y. W., Suchard S. J., Nagpal A. L., and Glenney, J. R. (1985) A T-lymphoma transmembrane glycoprotein (gp 180) is linked to the cytoskeletal protein, fodrin.J. Cell Biol. 101, 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Braun P. E., Horvath E., Yong V. W., and Bernier L. (1990) Identification of GTP-binding proteins in myelin and oligodendrocyte membranes.J. Neurosci. Res. 26, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Brunner C., Lassmann H., Waehneldt T., Matthieu J. M., and Linington C. (1989) Differential ultrastructural localization of myelin basic protein, myelin/oligodendroglial glycoprotein, and 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the CNS of adult rat.J. Neurochem. 52, 296–304.

    Article  PubMed  CAS  Google Scholar 

  • Courand P.-O., Delavier-Klutchko C., Durieu-Trautmann O., and Strosberg A. D. (1981) Antibodies raised against β-adrenergic receptors stimulate adenyl cyclase.Biochem. Biophys. Res. Comm. 99, 1295–1302.

    Article  Google Scholar 

  • Deane D. L., Harvey E., and Steel C. M. (1991) Differential effects of CD45, CD45R, and CD45R0 monoclonal antibodies in modulating human B cell activation.Clin. Exp. Immunol. 83, 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh D. S., Kuizon S., Bear W. D., and Brockeroff, H. (1980) Distribution of phosphoinositides among subfractions of rat brain myelin.Lipids 15, 14–18.

    Article  PubMed  CAS  Google Scholar 

  • Diaz M., Bornstein M. B., and Raine C. S. (1978) Disorganization of myelinogenesis in tissue culture by anti-CNS antiserum.Brain Res. 154, 231–239.

    Article  PubMed  CAS  Google Scholar 

  • Dixon S. J., Stewart D., Grinstein S., and Spiegel S. (1987) Transmembrane signalling by the B subunit of cholera toxin: Increased cytoplasmic free calcium in rat lymphocytes.J. Cell Biol. 105, 1153–1161.

    Article  PubMed  CAS  Google Scholar 

  • Dyer C. A. and Matthieu J. M. (1993) Antibodies to MOSP and MOG regulate cytoskeletal structure in cultured oligodendrocytes. Submitted.

  • Dyer C. A., Hickey W. F., and Geisert E. E., Jr. (1991) Myelin/oligodendrocyte-specific protein: a novel surface membrane protein that associates with microtubules.J. Neurosci. Res. 28, 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Dyer C. A. and Benjamins J. A. (1991) Galacto-cerebroside and sulfatide independently mediate Ca2+ responses in oligodendrocytes.J. Neurosci. Res. 30, 699–711.

    Article  PubMed  CAS  Google Scholar 

  • Dyer C. A. and Benjamins J. A. (1990) Glycolipids and transmembrane signaling: antibodies to galacto-cerebroside cause an influx of calcium in oligodendrocytes.J. Cell Biol. 111, 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Dyer C. A. and Benjamins J. A. (1989a) Organization of oligodendroglial membrane sheets. I: Association of myelin basic protein and 2′,3′-cyclic nucleotide 3′-phosphohydrolase with cytoskeleton.J. Neurosci. Res. 24, 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Dyer C. A. and Benjamins J. A. (1989b) Organization of oligodendroglial membrane sheets: II. Galactocerebroside:antibody interactions signal changes in cytoskeleton and myelin basic protein.J. Neurosci. Res. 24, 212–221.

    Article  PubMed  CAS  Google Scholar 

  • Dyer C. A. and Benjamins J. A. (1988a) Redistribution and internalization of antibodies to galactocerebroside by oligodendroglia.J. Neurosci. 8, 883–891.

    PubMed  CAS  Google Scholar 

  • Dyer C. A. and Benjamins J. A. (1988b) Antibody to galactocerebroside alters organization of oligodendroglial membrane sheets in culture.J. Neurosci. 8, 4307–4318.

    PubMed  CAS  Google Scholar 

  • Eichberg J., Berti-Mattera L. N., Day S-F., Lower, J., and Zhu X. (1989) Basal and receptor-stimulated metabolism of polyphosphoinositides in peripheral nerve myelin.J. Neurochem. 52 (Suppl.) 524.

    Google Scholar 

  • Eichberg J. and Dawson R. M. C. (1965) Polyphosphoinositides in myelin.Biochem. J. 96, 644–650.

    PubMed  CAS  Google Scholar 

  • Eichberg J. and Hauser G. (1973) The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain.Biochem. Biophys. Acta 326, 210–223.

    PubMed  CAS  Google Scholar 

  • Exton J. H. (1988) Mechanisms of action of calciummobilizing agonists: some variations on a young theme.Faseb J. 2, 2670–2676.

    PubMed  CAS  Google Scholar 

  • Fischer I., Konola J., and Cochary E. (1990) Microtubule associated protein (MAP1B) is present in cultured oligodendrocyte and co-localizes with tubulin.J. Neurosci. Res. 27, 112–124.

    Article  PubMed  CAS  Google Scholar 

  • Fishman P. H. (1982) Role of membrane ganglioside in the binding and action of bacterial toxins.J. Membrane Biol. 69, 85–97.

    Article  CAS  Google Scholar 

  • Flanagan J., and Koch G. L. E. (1978) Cross-linked surface IgG attaches to action.Nature 273, 278–281.

    Article  PubMed  CAS  Google Scholar 

  • Fry J. M., Weissbarth S., Lehrer G. M., and Bornstein M. B. (1974) Cerebroside antibody inhibits sulfatide synthesis and myelination and desalination in cord tissue cultures.Science 183, 540–542.

    Article  PubMed  CAS  Google Scholar 

  • Fry J. M., Lehrer G. M., and Bornstein M. B. (1972) Sulfatide synthesis: inhibition by EAE serum.Science 175, 192–194.

    Article  PubMed  CAS  Google Scholar 

  • Gard A. L. and Pfeiffer S. E. (1989) Oligodendrocyte progenitors isolated directly from developing telencephalon at a specific phenotypic stage: myelinogenic potential in a defined environment.Development 106, 119–132.

    PubMed  CAS  Google Scholar 

  • Geiger B. and Singer S. J. (1979) The participation of α-actinin in the capping of cell membrane components.Cell 16, 213–222.

    Article  PubMed  CAS  Google Scholar 

  • Geppert T. D. and Lipsky P. E. (1987) Accessory cell independent proliferation of human T4 cells stimulated by immobilized monoclonal antibody to CD3.J. Immunol. 138, 1660–1665.

    PubMed  CAS  Google Scholar 

  • Golly F., Larocca J. N. and Ledeen, R. W. (1990) Phosphoinositide breakdown in isolated myelin is stimulated by GTP analogues and calcium.J. Neurosci. Res. 27, 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Hockberger P. E. and Swandulla D. (1987) Direct ion channel gating: A new function for intracellular messengers.Cell. Mol. Neurobiol. 7, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S., Chang K. J. and Cuatrecasas P. (1978) Antibodies to purified insulin receptor have insulin-like activity.Science 200, 1283–1284.

    Article  PubMed  CAS  Google Scholar 

  • Kahn D. W. and Morell, P. (1988) Phosphatic acid and phosphoinositide turnover in myelin and its stimulation by acetylcholine.J. Neurochem. 50, 1542–1550.

    Article  PubMed  CAS  Google Scholar 

  • Karthigasan J., Kosaras B. and Kirschner, D. A. (1991) Isolation and composition of radial component from CNS myelin.Trans. Amer. Soc. Neurochem. 22, 161.

    Google Scholar 

  • Kerlero de Rosbo N., Honegger P., Lassmann H., and Matthieu, J.-M. (1990) Desalination induced in aggregating brain cell cultures by a monoclonal antibody against myelin oligodendrocyte glyco-protein (MOG).J. Neurochem. 55, 583–587.

    Article  PubMed  CAS  Google Scholar 

  • Keith C. H., Bajer A. S., Ratan R. Maxfield F. R., and Shelanske M. L. (1986) Calcium and calmodulin in the regulation of the microtubular cytoskeleton.Ann. NY Acad. Sci. 466, 375–391.

    Article  PubMed  CAS  Google Scholar 

  • Kidd G. J., Andrews S. B., and Trapp B. D. (1991) Microtubule organization in myelinating Schwann cells.Trans. Amer. Soc. Neurochem. 22, 262.

    Google Scholar 

  • Knapp P. E., Bartlett W. P., and Skoff R. P. (1987) Cultured oligodendrocytes mimic in vivo pheno-typic characteristics: cell shape, expression of myelin specific antigens, and membrane production.Dev. Biol. 120, 356–365.

    Article  PubMed  CAS  Google Scholar 

  • Konola J. T., Tyler B. M., Yamamura T., and Lees M. B. (1991) Distribution of proteolipid protein and myelin basic protein in cultured mouse oligodendrocytes: primary vs. secondary cultures.J. Neurosci. Res. 28, 49–64.

    Article  PubMed  CAS  Google Scholar 

  • Kono T., Robinson F. W., Blevins, T. L., and Ezaki O. (1982) Evidence that translocation of the glucose transportactivity is the major mechanism of insulin action on glucose transport in fat cells.J. Biol. Chem. 257, 10,942–10,946.

    CAS  Google Scholar 

  • Kopf G. S. and Woolkalis M. J. (1991) ADP-ribosylation of G proteins with pertussis toxin.Meth. Enzymol.,195, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Kornecki E., Walkowiak B., Naik U. P., and Ehrlich Y. H. (1990) Activation of human platelets by a stimulatory monoclonal antibody.J. Biol. Chem. 265, 10,042–10,048.

    CAS  Google Scholar 

  • Kosaras B. and Kirschner D. A. (1990) Fine structure and supramolecular organization of the radial component of CNS myelin.Ann. NY Acad. Sci 605, 430–434.

    Article  Google Scholar 

  • Lassmann H., Brunner C. Bradl M., and Linington C. (1988) Experimental allergic encephalomyelitis: the balance between encephalitogenic T lymphocytes and desalinating antibodies determine size and structure of demyelinated lesions.Acta Neuropathol. (Berl.) 75, 566–576.

    Article  CAS  Google Scholar 

  • Lassmann H. and Linington C. (1987) The role of antibodies against myelin surface antigens in desalination and in chronic EAE, inA Multidisciplinary Approach to Myelin Diseases (Crescenzi G. S., ed.), Plenum, London, pp. 219–225.

    Google Scholar 

  • Law H., Itkonnen O., and Lingwood C. A. (1988) Sulfogalactolipid binding protein SLIP 1: A conserved function for a conserved protein.J. Cell. Physiol. 137, 462–468.

    Article  PubMed  CAS  Google Scholar 

  • Ledeen R. W. (1984) Lipid-metabolizing enzymes of myelin and their relation to the axon.J. Lipid. Res. 25, 1548–1544.

    PubMed  CAS  Google Scholar 

  • Lees M. B. and Brostoff S. W. (1984) Proteins of myelin, inMyelin (Morell, P., ed.), Plenum, NY, pp. 197–217.

    Google Scholar 

  • Lees M. B. and Sapirstein V. S. (1983) Myelin-associated enzymes, inHandbook of Neurochemistry, vol. 4 (Lajtha A., ed.), Plenum, NY, pp. 435–460.

    Google Scholar 

  • Lemke, G. (1988) Unwrapping the genes of myelin.Neuron 1, 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Levine S., Xian C. Y., Agocha B., Allopenna J. Welte K., Armstrong, D., and Evans, R. L. (1991) Differential modulation of the CD-2 and CD-3 T cell activation pathways by a monoclonal antibody to Leu-13.Cell. Immunol. 132, 366–376.

    Article  PubMed  CAS  Google Scholar 

  • Linington C., Bradl M., Lassmann H., Brunner C., and Vass, K. (1988) Augmentation of desalination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein.Am. J. Pathol. 130, 443–454.

    PubMed  CAS  Google Scholar 

  • Linington C., Webb M., and Woodhams P. L. (1984) A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody.J. Neuroimmunol.,6, 387–396.

    Article  Google Scholar 

  • Lund-Johansen F., Olweus J., Aarli A., and Bjerknes R. (1991) The IgG FcRII and the PI-linked IgG FcRIII trigger cytoplasmic calcium fluxes independently in human granulocytes.Scand. J. Immunol. 33, 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Marcum J. M., Dedman J. R., Brinkley B. R., and Means A. R. (1978) Control of microtubule assembly-disassembly by calcium-dependent regulator protein.Proc. Natl. Acad. Sci. USA 75, 3771–3775.

    Article  PubMed  CAS  Google Scholar 

  • Martinson E. A., Trilivas I., and Brown J. H. (1990) Rapid protein kinase C-dependent activation of phospholipase D leads to delayed 1,2-diglyceride accumulation.J. Biol. Chem. 265, 22,282–22,287.

    CAS  Google Scholar 

  • Matthieu J. N. and Amiguet P. (1990) Myelin/oligodendrocyte glycoprotein (MOG) expression during development in normal and myelin-deficient (mld) mice.Dev. Neurosci. 12, 293–302.

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi J. and Pozzan T. (1987) Pathways of, Ca2+ influx at the plasma membrane: voltage, receptor, and second messenger-operated channels.Exp. Cell. Res. 171, 271–283.

    Article  PubMed  CAS  Google Scholar 

  • Merritt J. E. and Rink T. J. (1987) Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells.J. Biol. Chem. 262, 17,362–17,369.

    CAS  Google Scholar 

  • Mikol D. D., Gulcher J. R., and Stefansson, K. (1990) The oligodendrocyte-myelin glycoprotein belongs to a distinct family of proteins and contains the HNK-1 carbohydrate.J. Cell. Biol. 110, 471–479.

    Article  PubMed  CAS  Google Scholar 

  • Niedieck B., Kuwart E., Palacious O., and Drees O. (1965) Immunochemical and serological studies on the lipid hapten of myelin with relationship to EAE.Ann. NY Acad. Sci. 122, 266–276.

    Article  PubMed  CAS  Google Scholar 

  • Norton W. and Cammer W. (1984) Isolation and characterization of myelin, inMyelin (Morell, P., ed.) Plenum, NY, pp. 147–195.

    Google Scholar 

  • Owens G. C. and Bunge R. P. (1990) Schwann cells depleted of galactocerebroside express myelin-associated glycoprotein and initiate but do not continue the process of myelination.Glia 3, 118–124.

    Article  PubMed  CAS  Google Scholar 

  • Penner R., Matthews G., and Neher E. (1988) Regulation of calcium influx by second messengers in rat mast cells.Nature 334, 499–504.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer S. (1984) Oligodendrocyte development in culture systems, inAdvances in Neurochemistry vol. 5, (Agranoff B. W., and Aprison M. H., eds.), Plenum, NY, pp. 233–298.

    Google Scholar 

  • Raine C. (1984) Morphology of myelin and myelination, inMyelin (Morell, P., ed.) Plenum, NY, pp. 1–41.

    Google Scholar 

  • Raine C. S., Johnson A. B., Marcus D. M., Suzuki A., and Bornstein M. B. (1981) Desalination in vitro. Absorption studies demonstrate that galactocere-broside is a major target.J. Neurol. Sci. 52, 117–131.

    Article  PubMed  CAS  Google Scholar 

  • Ranscht B., Wood P. M., and Bunge R. P. (1987) Inhibition of in vitro peripheral myelin formation by monoclonal anti-galactocerebroside.J. Neurosci. 7, 2936–2947.

    PubMed  CAS  Google Scholar 

  • Ranscht B., Clapshaw P. A., Price J., Noble M., and Seifert W. (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside.Proc. Natl. Acad. Sci. USA 79, 2709–2713.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H. (1990) The complexities of intracellular Ca2+ signalling.Physiol. Chem. Hoppe-Seyler 371, 191–206.

    CAS  Google Scholar 

  • Reynolds R., Carey E. M., and Herschkowitz N. (1989) Immunohistochemical localization of myelin basic protein and 2′,3′-cyclic nucleotide 3′-phosphohy-drolase in flattened membrane expansions produced by cultured oligodendrocytes.Neuroscience 28, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Robinson P. J. (1991) Phosphatidylinositol membrane anchors and T-cell activation.Immunology Today 12, 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Rome L. H., Bullock P. N., Chiappelli F., Cardwell M., Adinolfi, A. M., and Swanson D. (1986) Synthesis of a myelin-like membrane by oligodendrocytes in culture.J. Neurosci. Res. 15, 49–65.

    Article  PubMed  CAS  Google Scholar 

  • Schluesener H. J., Sobel R. A., Linington C., and Weiner H. L. (1987) A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and desalination in central nervous system autoimmune disease.J. Immunol. 139, 4016–4021.

    PubMed  CAS  Google Scholar 

  • Schreiber A. B., Lax I., Yarden Y., Eshhar Z., and Schlessinger J. (1981) Monoclonal antibodies against receptor for epidermal growth factor induce early and delayed effects of epidermal growth factor.Proc. Natl. Acad. Sci. USA 78, 7535–7539.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz G. J. and Al-Awqati Q. (1986) Regulation of transepithelial H+ transport by exocytosis and endocytosis.Annu. Rev. Physiol. 48, 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Sedlacek H. H., Stourk J., Seiler F. R., Ziegler W., and Wiegandt H. (1976) Cholera toxin induced redistribution of sialoglycolipid receptor at the lymphocyte membrane.FEBS lett. 61, 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Sela B.-A., Raz A., and Geiger B. (1978) Antibodies to ganglioside GM1 induce, mitogenic stimulation and cap formation in rat thymocytes.Eur. J. Immunol. 8, 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Simpson I. A. and Cushman S. W. (1985) Regulation of glucose transporter and hormone receptor cycling by insulin in the rat adipose cell.Curr. Top. Membr. Trans. 24, 459–503.

    CAS  Google Scholar 

  • Soliven B., Szuchet B. G., Arnason W., and Nelson D. J. (1988) Forskolin and phorbol esters decrease the same K+ conductance in cultured oligoden-drocytes.J. Membr. Biol. 105, 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H., Trotter J., Schachner M., and Dettenmann H. (1989) Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture.Neuron 2, 1135–1145.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K. (1980) Myelin-associated enzymes, inNeurologic Mutations Affecting Myelination (Baumann N., ed.), Elsevier/North Holland Biomedical Press, Amsterdam, Netherlands, pp. 333–347.

    Google Scholar 

  • Taylor R. B., Duffus W. P. H., Raff M. C., and dePetris S. (1971) Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by a anti-immunoglobulin antibody.Nature 233, 225–229.

    Article  CAS  Google Scholar 

  • Tompkins T. A., and Moscarello M. A. (1991) Myelin basic protein stimulates phospholipase C activity.Trans. Am. Soc. Neurochem. 22, 163.

    Google Scholar 

  • Vandenberghe P. and Ceuppens J. L. (1991) Immobilized anti-CD5 together with prolonged activation of protein kinase C induce interleukin 2-dependent T cell growth: evidence for signal transduction through CD5.Eur. J. Immunol. 21, 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Vartanian T., Szuchet S., Dawson G., and Campagnoni A. T. (1986) Oligodendrocyte adhesion activates protein kinase C-mediated phosphorylation of myelin basic protein.Science 234, 1395–1398.

    Article  PubMed  CAS  Google Scholar 

  • Wade J. B. (1986) Role of membrane fusion in hormonal regulation of epithelial transport.Annu. Rev. Physiol. 48, 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Wilson R. and Brophy P. J. (1989) Role for the oligodendrocyte cytoskeleton in myelination.J. Neurosci. Res. 22, 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Wilson L. and Farrell K. W. (1986) Kinetics and steady state dynamics of tubulin addition and loss at opposite microtubules ends: the mechanism of action of soliciting.Ann NY Acad. Sci. 466, 690–708.

    Article  PubMed  CAS  Google Scholar 

  • Yamada A., Nojima Y., Sugita K., Dang N. H., Schlossman S. F., and Morimoto C. (1991) Crosslinking of VLA/CD29 molecule has a co-mitogenic effect with an anti-CD3 on, CD4 cell activation in serum-free culture system.Eur. J. Immunol. 21, 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H., Fukunaga K., Goto S., Tanaka E., and Miyamoto E. (1985) Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, t factor, and tubulin, and comparison with cAMP-dependent phosphorylation.J. Neurochem. 44, 759–768.

    Article  PubMed  CAS  Google Scholar 

  • Young J. D.-E., Unkeless J. C., Kaback H. R., and Cohn Z. A. (1983a) Mouse macrophage Fc receptor for IgGg2b/g1 in artificial and plasma membrane vesicles functions as a ligand-dependent ionophore.Proc. Natl. Acad. Sci. USA 80, 1636–1640.

    Article  PubMed  CAS  Google Scholar 

  • Young J. D.-E., Unkeless J. C., Young T. M., Mauro A., and Cohn, Z. A. (1983b) Role for mouse macrophage IgG Fc receptor as ligand-dependent ion channel.Nature 306, 186–189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, C.A. Novel oligodendrocyte transmembrane signaling systems. Mol Neurobiol 7, 1–22 (1993). https://doi.org/10.1007/BF02780606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02780606

Index Entries

Navigation