Skip to main content
Log in

Identification of mitochondrial protein complexes inArabidopsis using two-dimensional blue-native polyacrylamide gel electrophoresis

  • Updates
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Mitochondria fulfill a wide range of functions in the plant cell, including producing ATP, providing carbon skeletons for biosynthesis, and biosynthesizing vitamins and cofactors. Recently, mitochondria have been implicated in the pathway of programmed cell death in plant cells. In addition, mutations in the mitochondrial genome have been shown to be causally related to cytoplasmic male sterility—the failure to produce functional pollen in a range of crop plants. Proteomics has been used to attempt to catalogue mitochondrial proteins and extend our understanding of this essential organelle. Conventional proteomics based on isoelectric focusing and SDS-PAGE is unsuitable for hydrophobic proteins and therefore does not allow the identification of many components of the respiratory complexes. To identify such proteins, we have used blue-native PAGE to fractionate protein complexes in their native state, followed by SDS-PAGE to separate component subunits of each complex. A total of 40 protein spots were reproducibly resolved, and 29 were identified by means of mass spectrometry, thus giving a map of the most abundant complexes in plant mitochondria. Chaperones; transporters; novel proteins; and proteins involved in the respiratory chain, the citric acid cycle, amino acid and carbon metabolist, and stress response were identified. This study gives new insight on the role and functioning of well-characterised and recently identified mitochondrial proteins by localising them to specific complexes. It also identifies novel proteins in plant mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2D:

2-dimensional

MALDI-ToF:

matrix-assisted laser desorption/ionisation, time of flight

MS/MS:

tandem mass spectrometry

References

  • Arpagaus S, Rawyler A, and Braendle R (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277: 1780–1787.

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Leaver CJ, and McCabe PF (1999) Translocation of cytochromec from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463: 151–154.

    Article  PubMed  CAS  Google Scholar 

  • Bardel J, Louwagie M, Jaquinod M, Jourdain A, Luche S, Rabilloud T, Macherel D, Garin J, and Bourguignon J (2002) A survey of the plant mitochondrial proteome in relation to development. Proteomics 2: 880–898.

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, and Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10: 1723–1732.

    PubMed  CAS  Google Scholar 

  • Braun HP and Schmitz UK (1999) The protein-import apparatus of plant mitochondria. Planta 209: 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Brdiczka D, Beutner G, Ruck A, Dolder M, and Wallimann T (1998) The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors 8: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Bridger WA, Wolodko WT, Henning W, Upton C, Majumdar R, and Williams SP (1987) The subunits of succinyl-coenzyme A synthetase—function and assembly. Biochem Soc Symp 54: 103–111.

    PubMed  CAS  Google Scholar 

  • Brookes S, Pinner A, Ramachandran A, Coward L, Barnes S, Kim H, and Darley-Usmar VM (2002) High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signalling complexes. Proteomics 2: 969–977.

    Article  PubMed  CAS  Google Scholar 

  • Douce R, Bourguignon J, Neuburger M, and Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6: 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Knorzer OC, and Boger P (1993) Ketol-Acid Reductoisomerase from Barley (Hordeum vulgare) Purification, Properties, and Specific Inhibition. Plant Physiol 103: 903–910.

    PubMed  CAS  Google Scholar 

  • Hemrika W, De Jong M, Berden JA, and Grivell LA (1994) The C-terminus of the 14-kDa subunit of ubiquinol-cytochrome-c oxidoreductase of the yeastSaccharomyces cerevisiae is involved in the assembly of a functional enzyme. Eur J Biochem 220: 569–576.

    Article  PubMed  CAS  Google Scholar 

  • Genomic Arabidopsis Resource Network. GARNet Web site. 1 June 2003 <http://spare0.york.ac.uk/res/gamet/gamet.htm>.

  • Gray MW, Burger G, and Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol. 2: Reviews 1018.

  • Green DR and Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Gueguen V, Macherel D, Jaquinod M, Douce R, and Bourguignon J (2000) Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. J Biol Chem 275: 5016–5025.

    Article  PubMed  CAS  Google Scholar 

  • Jansch L, Kruft V, Schmitz UK, and Braun HP (1996) New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J 9: 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Karabashian LV, Agadzhanian SA, Danoian KV, and Kazarian RA (1988) Structural organization of glutamate dehydrogenase hexamer. 1. Immobilization on sepharose as a model for analysis of structural-functional characteristics of the enzyme. Bioorg Khim 14: 1495–1501.

    PubMed  CAS  Google Scholar 

  • Kruft V, Eubel H, Jansch L, Werhahn W, and Braun HP (2001) Proteomic approach to identify novel mitochondrial proteins inArabidopsis. Plant Physiol 127: 1694–1710.

    Article  PubMed  CAS  Google Scholar 

  • Martin J (1997) Molecular chaperones and mitochondrial protein folding. J Bioenerg Biomembr, 29: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • McEvily AJ and Harrison JH (1986) Subunit equilibria of porcine heart citrate synthase. Effects of enzyme concentration, pH, and substrates. J Biol Chem 261: 2593–2598.

    PubMed  CAS  Google Scholar 

  • Mackenzie S and McIntosh L (1999) Higher plant mitochondria. Plant Cell 11: 571–586.

    PubMed  CAS  Google Scholar 

  • Millar AH, Hill SA, and Leaver CJ (1999) Plant mitochondrial 2-oxoglutarate dehydrogenase complex: purification and characterization in potato. Biochem J 343: 327–334.

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Sweetlove LJ, Giege P, and Leaver CJ (2001) Analysis of theArabidopsis mitochondrial proteome. Plant Physiol 127: 1711–1727.

    Article  PubMed  CAS  Google Scholar 

  • Moller IM and Rasmusson AG (1998) The role of NADP in the mitochondrial matrix. Trends Plant Sci 3: 21–27.

    Article  Google Scholar 

  • Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW, Muijsers AO, van der Spek H, and Grivell LA (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19: 2444–2451.

    Article  PubMed  CAS  Google Scholar 

  • Matrix Science Inc. Matrix Science Web site. 5 May 2003 <http://www.matiixscience.com>.

  • May MJ and Leaver CJ (1993) Oxidative Stimulation of Glutathione Synthesis inArabidopsis thaliana Suspension Culture. Plant Physiol 103: 621–627.

    PubMed  CAS  Google Scholar 

  • Micromass. Waters Mass Spectrometry Systems Micromass Web site. 1 June 2003 <http://www.micromass.co.uk>.

  • Pfaller R, Kleene R, and Neupert W (1990) Biogenesis of mitochondrial porin: the import pathway. Experientia 46: 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Picciocchi A, Douce R, and Alban C (2001) Biochemical characterization of theArabidopsis biotin synthase reaction. The importance of mitochondria in biotin synthesis. Plant Physiol 127: 1224–1233.

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, Hack E, and Hallberg RL (1990) Function of the maize mitochondrial chaperonin hsp60: specific association between hsp60 and newly synthesized F1-ATPase alpha subunits. Mol Cell Biol 10: 3979–3986.

    PubMed  CAS  Google Scholar 

  • Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjans Y, Douce R, and Rebeille F (2001) Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase inArabidopsis thaliana. Proc Natl Acad Sci USA 98: 15360–15365.

    Article  PubMed  CAS  Google Scholar 

  • Saviani EE, Orsi CH, Oliveira JF, Pinto-Maglio CA, and Salgado I (2002) Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death. FEBS Lett 510: 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Schagger H (2001) Blue-native gels to isolate protein complexes from mitochondria. Methods Cell Biol 65: 231–244.

    Article  PubMed  CAS  Google Scholar 

  • Schagger H and von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199: 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Sharma YK and Davis KR (1995) Isolation of a novelArabidopsis ozone-induced cDNA by differential display. Plant Mol Biol 29: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Skibbe DS, Liu F, Wen TJ, Yandeau MD, Cui X, Cao J, Simmons CR and Schnable PS (2002) Characterization of the aldehyde dehydrogenase gene families ofZea mays andArabidopsis. Plant Mol Biol 48: 751–764.

    Article  PubMed  CAS  Google Scholar 

  • Small WC and Jones ME (1990) Pyrroline 5-carboxylate dehydrogenase of the mitochondrial matrix of rat liver. Purification, physical and kinetic characteristics. J Biol Chem 265: 18668–18672.

    PubMed  CAS  Google Scholar 

  • Stryer L (1988) Biochemistry, 3rd ed, pp 373–396. Freeman, New York.

    Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day D, Leaver CJ, and Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32: 891–904.

    Article  PubMed  CAS  Google Scholar 

  • Swiss Institute of Bioinformatics. ExPASy Molecular Biology Server Web site. 1 June 2003 <http://au.expasy.org>.

  • Taiz L and Zeiger E (2002) Plant Physiology, 3rd ed, pp 232–244. Sinauer, Sunderland.

    Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, and Brennicke A (1997) The mitochondrial genome ofArabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genet 15: 57–61.

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe GC and McIntosh L (1997) Alternative oxidase: From Gene to Function. Ann Rev of Plant Physiol and Plant Molec Biol 48: 703–734.

    Article  CAS  Google Scholar 

  • Velot C, Mixon MB, Teige M, and Srere PA (1997) Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochem 36: 14271–14276.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Leaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giege, P., Sweetlove, L.J. & Leaver, C.J. Identification of mitochondrial protein complexes inArabidopsis using two-dimensional blue-native polyacrylamide gel electrophoresis. Plant Mol Biol Rep 21, 133–144 (2003). https://doi.org/10.1007/BF02774240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02774240

Key words

Navigation