Skip to main content
Log in

Establishment of rapidly proliferating rice cell suspension culture and its characterization by fluorescence-activated cell sorting analysis

  • Genetic Resources
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

A rapidly growing and fine-textured cell line, NB2P, was established from Japonica rice cultivar Nipponbare and characterized in this study. Addition of casein enzymatic hydrolysate (2 g/L) and pectinase (0.005%) to the suspension medium resulted in a 2-fold-increased rate of cell growth and reduced aggregation. Remarkably, the medium and conditions described here resulted in growth leading to a 9-fold increase in fresh weight 7 d after subculture. High-quality, well-dispersed nuclei were obtained from this NB2P cell culture. Fluorescence-activated cell sorting (FACS) analysis of the isolated nuclei showed a clear separation of each cell cycle phase in both small- and large-scale preparations. On the basis of representative data from the nuclei fraction in the G1 phase, purity of the sorted and recovered nuclei was higher than 98%. The studies described here demonstrate that NB2P culture can be a powerful tool for studying many important plant processes, including DNA replication and cell cycle-related pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

DAPI:

4′,6-diamidino-2-phenylindole

FACS:

fluorescence-activated cell sorting

MES:

2-(N-morpholino)-ethanesulfonic acid

PI:

propidium iodide

References

  • Ahn S, Anderson JA, Sorrells ME, and Tanksley SD (1993) Homoeologous relationships of rice, wheat, and maize chromosomes. Mol Gen Genet 241: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, and Benfey PN (2003) A gene expression map of theArabidopsis root. Science 302: 1956–1960.

    Article  PubMed  CAS  Google Scholar 

  • Biswas GCG, Iglesias VA, Datta SK, and Potrykus I (1994) Transgenic indica rice (Oryza sativa L.) plants obtained by direct gene transfer to protoplasts. J Biotechnol 32: 1–10.

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Srivastava AK, and Bisaria VS (2002) Optimization of culture parameters for production of podophyllotoxin in suspension culture ofPodophyllum hexandrum. Appl Biochem Biotechnol 102/103: 381–393.

    Article  Google Scholar 

  • Christou P, Ford TL, and Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Biotechnology 9: 957–962.

    Article  Google Scholar 

  • Davey MW, Gilot C, Persiau G, Ostergaard J, Han Y, Bauw GC, and Montagu MCV (1999) Ascorbate biosynthesis inArabidopsis cell suspension culture. Plant Physiol 121: 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J, Binarova P, and Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum 31: 113–120.

    Article  Google Scholar 

  • Enriquez-Obregon GA, Prieto-Samsonov DL, de la Riva GA, Perez M, Selman-Housein G, and Vazquez-Padron RI (1994)Agrobacterium-mediated Japonica rice transformation: a procedure assisted by an antinecrotic treatment. Plant Cell Tissue Org Cult 59: 159–168.

    Article  Google Scholar 

  • Fabian-Marwedel T, Umeda M, and Sauter M (2002) The rice cyclin-dependent kinase-activation kinase R2 regulates S-phase progression. Plant Cell 14: 197–210.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Ito M, Sugiyama M, and Komamine A (1994) Mechanisms of the proliferation and differentiation of plant cells in cell suspension systems. Int J Dev Biol 38: 287–299.

    PubMed  CAS  Google Scholar 

  • Galbraith DW, Anderson MT, and Herzenberg LA (1999) Flow cytometric analysis and FACS sorting of cells based on GFP accumulation. Methods Cell Biol 58: 315–341.

    Article  PubMed  CAS  Google Scholar 

  • Goff SA (1999) Rice as a model for cereal genomics. Curr Opin Plant Biol 2: 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, and others. (2002) A draft sequence of the rice genome (Oryza sativa L. sspjaponica). Science 296: 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR (1995) The Living Fields: Our Agricultural Heritage, pp 30–31, Cambridge University Press, New York.

    Google Scholar 

  • Hosseini R and Mulligan B (2002) Application of rice (Oryza Sativa L.) suspension culture in studying senescence in vitro (1). Single strand preferring nuclease activity. Electron J Biotechnol 5 [online issue of April 15]. Available at: http://www.ejb.org/content/vol5/issue1/full/8.

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35: 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, and Gale M (1994) Conservation of genome structure between rice and wheat. Biotechnology 12: 276–278.

    Article  CAS  Google Scholar 

  • Magyar Z, Bako L, Bogre L, Dedeoglu D, Kapros T, and Dudits D (1993) Active cdc2 genes and cell cycle phase-specific cdc2-related kinase complexes in hormone-stimulated alfalfa cells. Plant J 4: 151–161.

    Article  CAS  Google Scholar 

  • Menges M and Murray JA (2002) SynchronousArabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 30: 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Hennig L, Gruissem W, and Murray JA (2003) Genome-wide gene expression in anArabidopsis cell suspension. Plant Mol Biol 53: 423–442.

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ and Fricker MD (2002) Control of demand-driven biosynthesis of glutathione in greenArabidopsis suspension culture cells. Plant Physiol 130: 1927–1937.

    Article  PubMed  CAS  Google Scholar 

  • Reichheld JP, Vernoux T, Lardon F, Van Montagu M, and Inze D (1999) Specific check-points regulate plant cell cycle progression in response to oxidative stress. Plant J 17: 647–656.

    Article  CAS  Google Scholar 

  • Sauter M (1997) Differential expression of a CAK (cdc2-activating kinase)-like protein kinase, cyclins, and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant J 11: 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Schubeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, and Groudine M (2002) Genome-wide DNA replication profile forDrosophila melanogaster: a link between transcription and replication timing. Nat Genet 32: 438–442.

    Article  PubMed  Google Scholar 

  • Su WW, Guan P, and Bugos RC (2004) High-level secretion of functional green fluorescent protein from transgenic tobacco cell cultures: characterization and sensing. Biotechnol Bioeng 85: 610–619.

    Article  PubMed  CAS  Google Scholar 

  • Thompson JA, Abdullah R, and Cocking EC (1986) Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose. Plant Sci 47: 123–133.

    Article  Google Scholar 

  • Veuskens J, Marie D, Brown SC, Jacobs M, and Negrutiu I (1995) Flow sorting of the Y sex-chromosome in the dioecious plantMelandrium album. Cytometry 21: 363–373.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Fujiyama A, Ichiba Y, Hattori M, Yada T, Sakaki Y, and Ikemura T (2002) Chromosome-wide assessment of replication timing for human chromsomes 11q and 21q: disease-related genes in timing-switch regions. Hum Mol Genet 11: 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Woodfine K, Fiegler H, Beare DM, Collins JE, McCann OT, Young BD, Debernardi S, Mott R, Dunham I, and Carter NP (2004) Replication timing of the human genome. Hum Mol Genet 13: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Yanpaisan W, King NJC, and Doran PM (1998) Analysis of cell cycle activity and population dynamics in heterogeneous plant cell suspensions using flow cytometry. Biotechnol Bioeng 58: 515–528.

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, and others (2002) A draft sequence of the rice genome (Oryza sativa L. ssp.indica). Science 296: 79–92.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W and Wu R (1988) Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor Appl Genet 76: 835–840.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TJ., Shultz, R.W., Hanley-Bowdoin, L. et al. Establishment of rapidly proliferating rice cell suspension culture and its characterization by fluorescence-activated cell sorting analysis. Plant Mol Biol Rep 22, 259–267 (2004). https://doi.org/10.1007/BF02773136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02773136

Key words

Navigation